
7/30/2019 Exosomes — beyond stem cells for restorative therapy in stroke and neurological injury | Nature Reviews Neurology

https://www.nature.com/articles/s41582-018-0126-4 1/18

Help us improve our products. Sign up to take part.

Review Article | Published: 30 January 2019

Exosomes — beyond stem cells for restorative
therapy in stroke and neurological injury

Zheng Gang Zhang, Benjamin Buller & Michael Chopp 

Nature Reviews Neurology 15, 193–203 (2019)

Abstract

Stroke is a leading cause of disability worldwide, and brain injuries devastate patients and
their families, but currently no drugs on the market promote neurological recovery.
Limited spontaneous recovery of function as a result of brain remodelling after stroke or
injury does occur, and cell-based therapies have been used to promote these endogenous
processes. Increasing evidence is demonstrating that the positive effects of such cell-
based therapy are mediated by exosomes released from the administered cells and that
the microRNA cargo in these exosomes is largely responsible for the therapeutic effects.
This evidence raises the possibility that isolated exosomes could be used alone as a
neurorestorative therapy and that these exosomes could be tailored to maximize clinical
benefit. The potential of exosomes as a therapy for brain disorders is therefore being
actively investigated. In this Review, we discuss the current knowledge of exosomes and
advances in our knowledge of their effects on endogenous neurovascular remodelling
events. We also consider the opportunities for exosome-based approaches to therapeutic
amplification of brain repair and improvement of recovery after stroke, traumatic brain
injury and other diseases in which neurorestoration could be a viable treatment strategy.
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Exosomes are involved in many aspects of normal brain physiology and facilitate
communication between brain cells and between the brain and the periphery.

Increasing evidence suggests that exosomes from mesenchymal stromal cells (MSCs)
mediate the beneficial effects of cell therapy for stroke and traumatic brain injury
(TBI).

The effects of MSC-derived exosomes alone have the potential to improve
neurological outcomes in animal models of stroke, TBI and other neurological
diseases.

Of the cargo in exosomes, microRNA (miRNA) is of prime importance in mediating
the therapeutic effects.

Compared with naive MSC-derived exosomes, engineered MSC-derived exosomes
that contain selected miRNA have more potent therapeutic effects in stroke and
TBIs.
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