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Abstract

Cellular therapy for spinal cord injury (SCI) is overviewed focusing on bone marrow mononuclear cells, olfactory

ensheathing cells, and mesenchymal stem cells. A case is made for the possibility of combining cell types, as well

as for allogeneic use. We report the case of 29 year old male who suffered a crush fracture of the L1 vertebral

body, lacking lower sensorimotor function, being a score A on the ASIA scale. Stem cell therapy comprised of

intrathecal administration of allogeneic umbilical cord blood ex-vivo expanded CD34 and umbilical cord matrix

MSC was performed 5 months, 8 months, and 14 months after injury. Cell administration was well tolerated with

no adverse effects observed. Neuropathic pain subsided from intermittent 10/10 to once a week 3/10 VAS. Recov-

ery of muscle, bowel and sexual function was noted, along with a decrease in ASIA score to “D”. This case supports

further investigation into allogeneic-based stem cell therapies for SCI.

Introduction
Approximately 12,000 new cases of spinal cord injury

(SCI) occur per annum in the US, with about 300,000

patients living with neurological consequences [1].

Post-injury medical interventions are aimed at treat-

ment of complications such as autonomic dysreflexia,

pain, and urinary tract infections. Regenerative

approaches using growth factors and various cell

therapies are particularly appealing with early clinical

reports of improvement using autologous bone mar-

row cells [2-4], olfactory ensheathing cells [5,6], and

Schwann Cells [7]. In this manuscript we will describe

some of the cellular/molecular aspects of spinal cord

injury and regeneration, followed by overviewing

selected preclinical and clinical interventions in order

to provide a background for the rationale of cellular

therapy for SCI. We will subsequently describe a

combination approach that has yielded promising

results in a case report, with the hope of stimulating

further research into such allogeneic combination

approaches.

SCI Background

Nerve damage in SCI occurs in the majority of cases as a

result of the combined effects of the initial physical injury,

and subsequent inflammatory response caused in part by

physical damage to the blood brain barrier, immune cell

response to injury, and local ischemia. Typical causes of

injury include contusive, compressive or stretch damage

which is associated with severing of axons at the nodes of

Ranvier, leading to axon retraction [8]. Furthermore,

axons proximal to the area of injury that do not retract are

known to develop abnormalities such as loss of myelina-

tion and swelling of the axonal body, resulting in loss of

excitability [9]. Demyelination is in part believed to result

from death of oligodendrocytes surrounding the axon, a

process which occurs even at 3 weeks after the initial

injury [10]. Importance of demyelination in this process is

seen in experiments where remyelination induced by

administration of Schwann cells has been demonstrated to

elicit benefit in animal models of SCI [11]. Mechanistically,

oligodendrocyte death appears to be related to the death

receptor Fas based on: a) Pattern of expression is tempora-

rily correlated with oligodendrocyte apoptosis in SCI mod-

els [12]; b) Genetic inactivation of Fas results in reduced

oligodendrocyte death [13]; and c) Administration of solu-

ble Fas [14] has a protective effect on SCI associated
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demyelination. Interestingly, administration of human

umbilical cord blood stem cells in a rat SCI model results

in therapeutic benefit which seems to be mediated by

reduction of Fas expression [15]. Death of neurons them-

selves subsequent to SCI is associated with release of glu-

tamate and other excitotoxins such as free ATP [16-18].

Interestingly, excitotoxicity occurs not only as a result of

initial injury, but has also been implicated in secondary,

more long-term, neuronal damage [19].

Associated with demyelination is the exposure of

potassium channels which causes accumulation of the

ion intraneuronally, thus further modifying ability to

transmit electrical signals [20]. Inhibition of fast acting

potassium channel channels using 4-aminopyridine has

demonstrated some therapeutic effects in animal models

of SCI [21,22], and in clinical trials [23-25].

Thus the initial injury process seems to cause: a)

direct transection of neurons; b) inflammatory responses

that stimulate a self-perpetuating cascade of axon retrac-

tion; c) inflammatory mediated death of oligodendro-

cytes; and d) stimulation of mediators such as NOGO

that prevent endogenous axonal reattachement. Having

described in general terms the cause of pathology, we

will now overview some of the mechanisms by which

the host responds to injury.

Endogenous Regenerative Processes

Subsequent to spinal cord injuries, Schwann cells originat-

ing from the spinal root traffic to the area of injury and

initiate a process of remyelinating injured axons [26]. An

endogenous progenitor cell type, termed the ependymal

cell, was observed in early studies to proliferate after spinal

cord transection in animal models [27]. These cells, which

reside in the ependyma, are known to be active in regen-

eration in embryonic life but their activity diminishes in

adulthood [28]. A study in rats with SCI or intense exer-

cise demonstrated BRDU incorporation into the ependy-

mal cells under both conditions. Furthermore, the study

demonstrated that ependymal cell mitosis is associated

with increased proliferation and differentiation primarily

into macroglia or cells with nestin phenotype [29]. It

appears that ependymal cells purified from rats that

underwent spinal cord injury proliferate in vitro almost

10-fold faster than ependymal cells from control animals,

thus suggesting an injury-associated mitogenic event.

Furthermore, in the same study it was demonstrated that

transplantation of undifferentiated ependymal cells or dif-

ferentiated oligodendrocyte precursor cells generated from

ependymal cells, when administered to a rat model of

severe spinal cord contusion induced recovery of motor

activity 1 week after injury [30]. Using genetic cell fate

mapping, it was demonstrated that primarily all neuro-

genic cells present post SCI are derived from ependymal

cells, including glial cells associated with scar tissue, as

well as a smaller number of oligodendrocytes [31]. Epen-

dymal cells are known to react to exogenous growth fac-

tors, for example, intrathecal administration of EGF and

FGF-2 was demonstrated to induce their proliferation

[32]. Thus one therapeutic approach may be administra-

tion of exogenous factors that stimulate/accelerate natural

remyelination processed. Indeed administration of FGF-2

has been demonstrated to improve locomotor function in

a rat SCI model [33].

Although at a cellular level various endogenous regen-

erative processes may be seen in the CNS, at a functional

level, post-injury regeneration is very limited. For example,

after axons are severed or damaged, the myelin compo-

nent of the axon is released into the extracellular environ-

ment where it generates inhibitors of neurite outgrowth

[34]. Inhibitors include Nogo-A, myelin-associated glyco-

protein (MAG) and oligodendrocyte myelin glycoprotein

(OMgp). All three of these proteins bind to the same

receptor, the Nogo-A receptor [35], and inhibit growth

cone migration towards the area of injury. Inhibition of

this receptor using antagonists has been demonstrated to

accelerate post-SCI healing in a rat model [36].

Another inhibitor of post-injury axon repair are the

reactive astrocytes that modify the ECM through secretion

of factors such as chondroitin sulfate proteoglycans

(CSPGs), including NG-2, neurocan, brevican, phospha-

can, and versican [37,38]. These proteoglycans, specifically

their side chains, are known to inhibit nerve growth and

in some cases contribute to formation of the glial scar that

serves as a physical barrier to axon regrowth [39]. Admin-

istration of the enzyme chondroitinase ABC, which cleaves

these side chains has been demonstrated to reduce axon-

inhibitory activity of CSPGs in vitro [40]. In vivo studies

demonstrated that condroitinase ABC therapy accelerates

recovery in animal models of SCI [41]. Supporting the

hypothesis that chondroitinase ABC benefits on SCI are

mediated by “inhibiting the inhibitor” of neurite out-

growth, a recent study demonstrated that treatment with

the enzyme provides a therapeutic window in which reha-

bilitation programs function optimally [42].

Angiogenesis is an integral part of numerous healing

processes. In the context of spinal cord injury, hypoxia

inducible factor (HIF)-1 alpha activates numerous

downstream effectors such as BDNF, VEGF, SDF-1, TrkB,

Nrp-1, CXCR4 and NO, that attempt to restore the “neu-

rovascular niche” after damage has occurred [43]. These

molecules act not only on creation of new vasculature but

also are involved in neurogenesis. The critical link between

neural recovery and angiogenesis may be seen in animal

models of post-stroke regeneration where cord blood

derived cells appear to elicit effects primarily by stimulat-

ing de novo vasculature which causes expansion of endo-

genous progenitors [44]. Transfection of neuronal

progenitors with the angiogenic factor VEGF has been
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shown to increase angiogenesis and recovery [45]. Addi-

tionally, administration of human CD133 peripheral blood

progenitor cells accelerates post-injury healing in part

through secretion of VEGF [46]. There is some evidence

that counter-angiogenic mechanisms are present in the

late post-injury setting. For example Mueller et al showed

that approximately 7 days post injury an accumulation of

endostatin/collagen XVIII is observed in the areas asso-

ciated with vascular remodeling [47].

Thus several endogenous repair mechanisms exist

including activation of ependymal cells and generation

of oligodendrocyte progeny, and angiogenesis. These are

inhibited in part by production of various agents such as

NOGO and ECM degradation productions. Tipping the

balance in favor of regeneration by exogenous growth

factor administration or providing inhibitors of inhibi-

tors is a promising approach. By understanding the

background biological post-injury terrain administration

of exogenous stem cells may be used for optimal results.

Stem Cell Therapy for SCI

Olfactory Ensheathing Cells

Given an endogenous reparative component, albeit mild,

exists in the injured CNS, an aim of research is to aug-

ment this process. Initial work in the 1980s focused on

providing a “bridge” for axon growth across the scar tis-

sue formed as a result of injury. Aguayo et al placed auto-

logous sciatic nerve grafts between the lower cervical/

upper thoracic spinal cord and the medulla oblongata in

injured mice and rats. At 1-7 months after grafting,

microscopic studies demonstrated myelinated axons had

migrated and grown across the graft. Horseradish peroxi-

dase was injected intraxonally to demonstrate functional

integrity of the axons [48]. Electrophysiological improve-

ments after excision of the spinal cord dorsal columns

was noted 5-6 months after application of peripheral

nerve graft across the injured area [49]. Work on using

grafted cells led to interest in olfactory ensheathing cells

as a potential source of glial cells for transplantation.

These cells function on the one hand to physically wrap

up numerous axons to form large bundles of axons, and

on the other hand are known to produce high levels of

axon-regenerating growth factors [50,51]. Olfactory

ensheathing cells have the unique property of being able

to repeatedly migrate from the nasal olfactory mucosa,

which is part of the peripheral nervous system into the

central nervous system environment of the olfactory bulb

[52]. This is in contrast to Schwann cells which are much

slower at integrating into the central nervous system.

Several studies have shown that combinations of olfac-

tory ensheathing cells with Schwann cells causes additive

therapeutic effects [53-55].

Purification of olfactory ensheathing cells can be per-

formed by selection for cells expressing the O4 antigen

but lacking expression of galactocerebroside. These cells

appear to have a unique phenotype in contrast to other

glial cells or Schwann cells, for example, they have

astrocyte markers and lack a basal lamina and collagen

fibrils [56,57]. Administration of olfactory ensheathing

cells across transected spinal cord in several models has

resulted in axonal regeneration and restoration of con-

duction velocity [58-60].

Clinical implementation of olfactory ensheathing cells

for SCI has been reported in several trials. Lima et al trea-

ted 7 patients with ASIA class A traumatic-induced SCI

from C4-T6. All patients reported improvement in ASIA

motor scores, with 2 patient reporting return of sensation

to bladder and one gaining control of anal sphincter. The

therapy was well tolerated, however adverse effects

included a sensory decrease in one patient [5]. A subse-

quent study by Mackay-Sim et al [6] reported no major

benefit in a 3 year follow-up of patients with traumatic

injury to the thoracic spine (T4-T10) that occurred 6-36

months prior to therapeutic intervention. Three patients

were administered ex vivo expanded autologous olfactory

ensheath cells, and compared to 3 control patients. All

patients had a sustained and complete loss of sensory and

motor function below the injury, being classified as ASIA

Category A. Cells were administered into the damaged

area of the spinal cord, as well as at the proximal and dis-

tal ends of the intact cord subsequent to laminectomy and

durotomy. No improvement was observed in functional

parameters tested including ASIA motor and sensory

assessment, COVS, or FIMS. Radiological assessment was

unremarkable in the treated patients, indicating safety of

the procedure. One treated patient had an increased sensi-

tivity to light touch that was observed over 3 segments.

Schwann Cells

Schwann cells are terminally differentiated cells of the per-

ipheral nervous system whose main function is remyelina-

tion and promoting axonal regeneration. These cells have

been used experimentally since 1981 for the purpose of

accelerating healing post SCI [61]. Since then, numerous

animal studies have been conducted. In a comprehensive

review, Tetzlaff et al [62] discussed 35 rodent studies in

which the overall findings where that Schwann cells pos-

sessed ability to regenerate sensory axons from the dorsal

root ganglia and propriospinal axons adjacent to the injury

site. However the cells were incapable of healing brainstem

spinal axons, nor where they able to cause axons exit and

reenter the host spinal cord. Functionally, benefits in loco-

motion, and neurological parameters subsequent to

Schwann cell administration have been noted in SCI

induced by subacute contusion [63], photochemical

damage [64], and transection [65].

Schwann cell clinical trial

Schwann cells are attractive from a clinical perspective

because of the possibility of using autologous cells, thus
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avoiding allogeneic immunological issues, or ethical

dilemmas associated with material of fetal origin. Saberi

et al [7] reported preliminary results in 4 patients trea-

ted with autologous Schwann cells suffering from

chronic thoracic SCI. Schwann cells were isolated from

the sural nerve and grown in vitro without passaging.

They were injected into at a concentration of 3-4.5

million cells in a total volume of 300 uL into the injured

segment of the cord adjacent to the rostral and caudal

ends.

No adverse effects or functional improvements were

noted, nor was MRI capable of identifying transplanted

cells. One of four patients reported increased motor and

sensory improvement after treatment.

Bone marrow stem cells

Bone marrow mononuclear cells have been classically

used as a hematopoietic stem cell source for bone mar-

row transplantation, however some efficacy has been

demonstrated in accelerating healing in cardiac [66],

hepatic [67,68], and vascular injury [69,70]. Given the

bone marrow contains cells capable of providing trophic

support for neurons [71-74], as well as cells possibly

capable of directly differentiating into neurons [75,76], a

series of investigations have been performed in this area.

In animal models it has been demonstrated that bone

marrow mononuclear cells [74], CD34 hematopoietic

stem cells [77], mesenchymal stem cells [78-80], and in

vitro differentiated mesenchymal stem cells [81], all pos-

sess some level of SCI regenerative activity.

The dog is a very relevant large animal model of SCI.

In a comprehensive, blinded study of spinal cord com-

pressive injury in the dog, Jung et al. demonstrated a

biologically and statistically improved outcome with

therapy using autologous and allogeneic bone marrow

mesenchymal stem cells. MRI, histology, and immuno-

fluorescence supported the direct effect of the therapy

on repair of the SCI [79].

Administration of bone marrow mononuclear cells via

lumbar puncture in patients with spinal cord injury has

been demonstrated to induce no serious adverse effects

[82]. A study of 8 patients with chronic and acute SCI

reported administration of bone marrow mononuclear

cells via intravenous route as well as into the spinal canal

and directly into the spinal cord. The authors observed

improvement in bladder function, as well as benefit using

the ASIA, Barthel (quality of life), Frankel, and Ashworth

instruments. Furthermore, it was stated that 52 SCI

patients have been treated with no serious adverse events

[2]. Another study examined 20 SCI patients complete

injury who were administered autologous bone marrow

mononuclear cells in an acute (10-30 days after injury)

and chronic (2-17 months after injury) setting. Improve-

ment in motor and/or sensory functions was observed

within 3 months in 5 of the 7 acute patients, and in 1 of

13 chronic patients. No adverse effects were reported

with 11 patients being followed up for more than 2 years

post stem cell administration [3]. Thus it appears that

autologous bone marrow cells have a favorable safety

profile, with some signal of efficacy, although larger

studies are required.

These approaches promoted a more aggressive proto-

col combining stem cell administration into the area of

injury, together with endogenous stem cell mobilization.

Yoon et al [4] assessed a total of 48 patients having com-

plete ASIA A SCI at the cervical or thoracic area that

were either a) untreated; b) treated 2 weeks or less after

the injury (acute); c) treated 2-8 weeks after the injury

(subacute); or d) treated more than 8 weeks after injury

(chronic). Treatment consisted of 108 autologous bone

marrow mononuclear cells administered in six injections

of 300-uL surrounding the lesion site with the injection

depth of 5 mm from the dorsal surface and 5 mm lateral

from the midline. The lesion was exposed by laminect-

omy one vertebra above to one below and the dura mater

was then incised, sparing the arachnoid, which was sub-

sequently opened separately with microscissors. GM-CSF

was administered in 5 monthly cycles of 5 daily injections

at the beginning of the month at a concentration of

250 g/m2 of body surface area. Injection procedure was

uneventful, with adverse events being mild, typically con-

sistent with GM-CSF administration. An increased inci-

dence of neuropathic pain was observed in the subacute

and chronically treated patients as compared to acute

and control patients. Neurological improvement (AIS A

to AIS B or AIS C) was observed in 29.5% and 33.3% of

patients in the acute and sub-acute groups, respectively.

No improvement was noted in the chronic group, 7.7%

and 12.5% was observed in the control, and a historical

control [83], respectively. Changes in spinal diameter,

both increases and decreases occurred in the treated

groups as compared to untreated. Functional MRI studies

indicated regeneration of functional neural pathways in

some of the treated patients. Interestingly, a correlation

between response and GM-CSF induced leukocytosis was

observed. This study is a continuation of previous work

by the same group, Park et al. [84], in which 6 patients

with complete AIS grade A SCI were treated with an

identical protocol. Four of the patients went from AIS A

to C, one patient when from AIS A to B, and one had no

change.

Adipose-derived Stem and Progenitor Cells

Mesenchymal stem cells derived from adipose tissue have

been extensively described in the literature, including sig-

nificant support for the ability of these progenitors to dif-

ferentiate into many neural cell types [85-87]. In a similar

experiment to the canine SCI bone manuscript described

above [79], Ryu and et al [88], conducted a blinded, pla-

cebo controlled canine clinical study of SCI using and
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cultured allogeneic adipose stem cells in a model of acute

SCI with cells administered intralesionally one week after

SCI. The treated groups both statistically outperformed

the saline control group and showed significant clinical

and histological improvement in ambulation and cord

neural repair.

Cord Blood/Placental Derived Cells

Umbilical cord and Wharton’s jelly derived MSC offer

unique therapeutic characteristics in comparison to bone

marrow MSC. Specifically, longer telomeres, increased

passage ability without loss of differentiation potential,

and more potent cytokine release activity are some

attractive features of this cell population [89]. Yang et al

[90], generated a population of Wharton’s jelly derived

MSC and administered the cells alone or after treatment

with neural conditioned media for 3 or 6 days into

immunocompetent rats subsequent to complete spinal

cord transection. Improvements in locomotion were

observed in animals receiving MSC or MSC treated with

conditioned media. Regeneration of corticospinal tract

axons and neurofilament-positive fibers was observed.

Mechanistically, the cells appeared to function at least in

part by production of growth factors such as bFGF,

GITR, VEGFR3, neurotrophin-3, and NAP-2. Studies are

currently underway using combinations of factors such

as BDNF together with cord MSC to augment regenera-

tive activity post-SCI [91]. Clinically, a case report from

Korea describes the administration of multipotent cord

blood derived stem cells into a SCI patient by local injec-

tion. These cells elicited improvement in ability to move

hips and thighs, as well as augmented sensory activity 41

days after cell therapy. Radiologically documented regen-

eration of spinal cord and cauda equina was noted [92].

Cord blood derived cells have been described to sti-

mulate post-infarct neurogenesis through stimulation of

angiogenesis [44], preclinical studies have sought to

determine whether this may be replicated in conditions

of spinal cord injury. Using a rat left spinal cord hemi-

section model, Zhao et al demonstrated superiority

functional recovery according to the Tarlov score by

intraspinal administration of human CD34 cells derived

from cord blood versus bone marrow [93]. Both cell

populations where shown to survive and migrate into

the area of injury, as well as differentiate into glial

(GFAP+) or neural (NeuN+)-like cells. Purified CD34

cells from cord blood were demonstrated in another

study to augment functional recovery as assessed by the

Basso-Beattie-Bresnahan Locomotor Scale, reduce the

area of the cystic cavity at the site of injury, increase

white matter volume, and stimulate axonal regeneration

[94]. Mechanistically it appears that cord blood CD34

cells mediate effects in part through secretion of glial

cell line-derived neurotrophic factor (GDNF) and vascu-

lar endothelial growth factor (VEGF) [95].

Fetal/ES Derived Neural Progenitors

Fetal-derived neurons have been shown to survive, differ-

entiate and integrate into the host spinal cord after injury

[96]. When used together with scaffolds or ventral root

implants, these cells can grow their axons along the

whole length of the peripheral nerves to reach muscles in

the limb and restore function after transection [97]. In

addition to local placement of fetal neurons in the

damaged area, systemic administration of fetal neural

precursors results in local homing through a SDF-1 and

HGF-1-dependent mechanism [98]. Although numerous

experiments have demonstrated varying degrees of effi-

cacy in animal models [99-103], the risk of oncogenesis

raises concerns for clinical testing. These fears where

increased when an ataxia telangiectasia patient receiving

8-12 week old human fetal neuron preparations devel-

oped a multi-focal brain tumor containing donor cell kar-

yotype after transplantation [104]. Another concern has

been development of allodynia as a result of improper

nervous connections being made [105]. Embryonic stem

(ES) cells offer the ability to generate specific nervous

system cells useful for addressing various aspects of the

SCI process. For example, ES generated neural precursors

[106], motor neurons [107], and oligodendrocytes

[108,109] have all been used to induce amelioration of

SCI in animal models. Recently Geron Inc received an

FDA approval to initiate clinical trials using ES-derived

oligodendrocytes in SCI [110], which was subsequently

placed on clinical hold before patient treatment occurred

[111]. At present ES-based approaches are limited by

similar concerns as fetal stem cell based approaches in

terms of oncogenesis and allodynia.

Case Report: Informed Consent
Before administration of experimental intervention, the

patient signed an informed consent form in which the

experimental nature of the procedure to be performed

was explained in detail. Additionally the patient was

made aware of possible adverse events of the procedure,

including, but not limited to, increases in neuropathic

pain, possibility of ectopic tissue formation, and uncer-

tainty whether benefits will be obtained by the procedure.

The protocol was approved by the local Institutional

Review Board.

Case Report: Combination of Placental MSC and
Cord CD34
Currently stem cell clinical trials in SCI have been

focused on use of autologous bone marrow, MSC, or

olfactory ensheathing cells, with one case report of allo-

geneic cord derived multipotent progenitor cell [92]. The

possibility of using allogeneic stem cell sources would

allow for generation of standardized, “ready to use” cellu-

lar productions that could be widely implemented. While
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allogeneic MSC have been used for late stage clinical

trials with safety being established [112], little work has

been reported on allogeneic CD34 cells in absence of

myeloablation/immune suppression. The authors have

recently published a series of 114 patients with neurode-

generative conditions treated with allogeneic non-

matched cord blood cells. While no adverse events were

associated with therapy, little is known about potential

efficacy of this approach [113]. The possibility of a com-

bination approach would be conceptually appealing given

that MSC are known anti-inflammatory and growth

factor producers, whereas CD34 cells produce angiogenic

factors and in some cases have been demonstrated to

differentiate into neurons directly. Here we describe a

protocol based on a combination of intrathecal adminis-

tration of CD34 and placental derived MSC.

The patient was born on November 5, 1979 and suf-

fered a spinal cord injury in a single propeller engine

airplane crash on May 13th of 2008. At the time of the

accident he was diagnosed with an incomplete spinal

cord injury at the level T12 - L1, and crush fracture of

the L1 vertebral body which was described as a type A

in the ASIA scale. The patient was initially treated at

Hospital Mexico in Costa Rica on the day of the acci-

dent. The spine was stabilized using paravertebral rods

from T11 to L2. Bone fragments were removed from

the spinal canal. After 1 week of being hospitalized, he

Table 1 Administration Schedule

Date Route CD34 MSC

Cycle 1

Oct 31 2008 IT 3 million 6 million

Nov 11 2008 IT 3 million 6 million

Nov 14 2008 IT 3 million 6 million

Nov 18 2008 IT 3 million 6 million

Nov 20 2008 IT 3 million 6 million

Cycle 2

Jan 21 2009 IT 3 million 6 million

Jan 23 2009 IT 3 million 6 million

Jan 26 2009 IT 3 million 7 million

Jan 28 2009 IT 3 million 7 million

Jan 30 2009 IT 3 million 7 million

Cycle 3

Jul 1 2009 IT 1.5 million 5.7 million

Jul 3 2009 IT 1.5 million 6.3 million

July 6 2009 IT 1.5 million 6.3 million

IV 1.5 million 3.9 million

July 8 2009 IT 1.5 million 6.12 million

IV 1.5 million 3.9 million

July 10 2009 IT 1.5 million 6.12 million

Table 2 Muscle Strength evaluation by Groups*

Jun 16 2008 Nov 13 2008 Feb 23 2009 Aug 5 2009 Jan 7 2010

Right Left Right Left Right Left Right Left Right Left

Hips:

Flexors 1+ 2 2 4 2+ 5- 3- 5 3 5

Extensors 1+ 2 2 4 2 5 2+ 5 3- 5

Abductors 1+ 2 2 4- 2- 5 2 5 4 5

Adductors 1+ 3 2 4 2 5- 2+ 5 4 5

Internal Rotators 1+ 2- 1 4- 1+ 5- 3- 5 3 5

External Rotators 1 2 1 3+ 2- 5- 3- 5 3 5

Knee:

Flexors 1 2+ 1 4 1+ 4- 2 5- 3- 5

Extensors 1 4- 1 4- 2- 5 2 5 4 5

Ankle:

Dorsiflexors 0 4- 1- 4- 1 5 1- 5 1 5

Plantaflexors 1- 3- 3 4 3+ 5 3+ 5 3 5

Eversion 0 3- 1 4- 1 5 1+ 5 2 5

Inversion 0 3- 1 4- 1 5 1+ 5 2 5

Toes:

Flexors 0 4- 1 3+ 1 5 2- 5 1 5

Extensors 0 4- 0 3+ 1- 5 1+ 5 1 5

*Spinal cord injury occurred May 13, 2008. Patient received stem cell therapy Oct 31-Nov 20, 2008, Jan 21-Jan 30, 2009, and July 1-10, 2009.
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was transferred to the National Rehabilitation Center in

Costa Rica, where he remained for 4 weeks. He was

required to use a harness for lumbar support and had to

remain in the supine position and physical therapy

focused on stretching exercises. Neuropathic pain was

present at a 10/10 for which he was administered Lyrica

at 300 mg/day.

Cellular treatment was performed in 3 cycles between

Oct 31-Nov 20, 2008, Jan 21-30, 2009, and July 1-10,

2009 consisting of intrathecal administration of CD34

and MSC, with the last cycle also receiving IV injections

(Table 1). MSC and CD34 cells where isolated from the

placental matrix and cord blood, respectively, as pre-

viously described by us [114]. No adverse effects were

associated with the lumbar puncture procedure, nor

were immunological reactions or GVHD noted. A pro-

gressive improvement in muscle strength was noted

during the observation period, with last evaluation per-

formed in January of 2010 (Table 2). Additionally,

increased sensation in various dermatomes was noted as

shown in Table 3. As of January 7th, 2010 he is categor-

ized as an ASIA D patient. He recovered urologic, sex-

ual and bowel function. The patient discontinued use of

Lyrica and reports occasional pain once a week at a

level of 3/10. Throughout the courses of cell treatments

the patient received physical therapy.

Spontaneous recovery of spinal cord injury patients has

been previously reported in the literature [115], which is

a concern for clinical trial design in this area [116]. How-

ever, recovery of bowel and sexual function in a patient

presenting with ASIA A injury is extremely rare. Given

that this study is a case report, we are cautious in the

interpretation of efficacy data. However, the demonstra-

tion of feasibility of intrathecal combination stem cell

administration, without occurrence of neuropathic pain

or ectopic tissue formation supports further investigation

of this approach in a standardized manner.
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