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Abstract
In the past few years, stem cells have become the focus 
of research by regenerative medicine professionals and 
tissue engineers. Embryonic stem cells, although capable 
of differentiating into cell lineages of all three germ 
layers, are limited in their utilization due to ethical issues. 
In contrast, the autologous harvest and subsequent 
transplantation of adult stem cells from bone marrow, 
adipose tissue or blood have been experimentally utilized 
in the treatment of a wide variety of diseases ranging 
from myocardial infarction to Alzheimer’s disease. The 
physiologic consequences of stem cell transplantation 
and its impact on functional recovery have been studied 

in countless animal models and select clinical trials. 
Unfortunately, the bench to bedside translation of this 
research has been slow. Nonetheless, stem cell therapy 
has received the attention of spinal surgeons due to its 
potential benefits in the treatment of neural damage, 
muscle trauma, disk degeneration and its potential 
contribution to bone fusion. 
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Core tip: Stem cells have become an increasingly feasible 
option for the future treatment of spinal disorders. Recent 
scientific advances have allowed researchers and spinal 
surgeons alike to investigate the potential of stem cells 
in the regeneration of degenerated disks, healing spinal 
cord injury and helping bone growth in spinal fusion. 
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INTRODUCTION
In recent years, stem cells have become a focus of regenerative 
medicine. Adult stem cells, harvested directly from 
bone marrow, adipose tissue or blood have the ability to 
undergo mitosis as well as multipotent differentiation 
into a variety of  cell lineages. The goal of  stem cell 
therapy is to replace or replenish diseased tissue through 
the localized differentiation of  transplanted stem cells 
into cells which advance the healing process or directly 
restore the tissue physically. Despite the years of  research 
elucidating the physiology and the processes of  stem cell 
differentiation, both the survival as well as the physical 
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and biochemical control over the stem cells when 
implanted into a body remains a challenge. Advances in 
material sciences have aided tremendously in providing 
a three-dimensional environment for the cells within a 
scaffold which allows for both the local retention of  cells 
where they are intended to operate and simultaneously 
allowing the diffusion of  nutrients to enable cell survival. 
Advances in genetic engineering on the other hand 
have allowed the modification of  stem cells to induce 
the expression of  selective growth factors to further 
aid in tissue reconstruction. Several challenges in spine 
surgery have been addressed by experimental ventures 
into stem cell therapy. Degenerative spinal disorders 
such as Degenerative Disk Disease have been sought to 
be addressed through the biological reconstruction of  
the disk by a variety of  stem cells and growth factors, 
thereby potentially circumventing the need for surgery. 
The potentially devastating consequences of  Spinal Cord 
Injury have been moderated through the implantation 
of  stem cells to aid in the recovery of  nerve cells. Spine 
surgery itself  has been the focus of  tissue engineers 
primarily to achieve bony fusion in the spinal fusion 
of  vertebrae to attain stability. The iatrogenic injury of  
peripheral nerves and skeletal muscle surrounding the 
spine, which inevitably occurs during spine surgery whilst 
access to the spine is being prepared, although not as 
dramatic in its effect on the disability of  the patient in the 
long-term has been addressed by many scientists. Overall, 
stem cell therapy, despite being in the experimental phase 
in most sub-disciplines, promises exciting opportunities 
to improve spine care and decrease the morbidity due to 
spine surgery in the future.

APPLICATION OF STEM CELLS IN SPINE 
SURGERY
Spine fusion
Spine fusion is performed to address the pain, deformity or 
neurologic deficit caused by degenerative conditions, spinal 
tumor, vertebral fractures and spinal deformities such as 
scoliosis and kyphosis amongst other indications. The 
bony fusion between two or more vertebrae eliminates the 
pain caused by aberrant motion of  the vertebrae through 
immobilization. Lumbar fusion has been reported to 
have increased at a rate of  220% from 1990, more than 
the increases for knee and hip arthroplasty combined[1].  
Ambulatory lumbar spine surgery has been demonstrated 
to increase at a larger rate relative to inpatient surgery[2]. 
Cervical and thoracolumbar fusions have also reportedly 
increased at a rate of  89% and 31%, respectively, mirroring 
the rapid increase in the utilization of  the procedure[3]. 
The introduction of  new surgical technology has not 
proven to reduce reoperation rates[4]. The vital elements 
in bony fusion are an adequate quantity of  bone-forming 
cells (osteogenesis), an appropriate microenvironment 
directing bone synthesis through a variety of  growth 
factors (osteoinduction), and a scaffold or cage in which 
the growth of  bone is well positioned (osteoconduction). 

Despite the recent advances in cage design and bone 
fusion extender materials, pseudoarthrosis remains a 
pressing issue occurring in 13%-41.4% of  patients[5-8]. 
Risk factors for pseudoarthrosis have been reported to 
be older age, thoracolumbar kyphosis, smoking, diabetes 
mellitus, metabolic bone disease and female gender[6,8-11]. 
As patients more than 60 years old represent the 
demographic with the largest increase in the rate of  fusion 
surgery, the medical community has begun investigating 
alternatives to support the process of  bone growth and 
fusion, for example with the implantation of  stem cells[1]. 
The gold standard for creating a bony fusion is the use of  
autograft bone from the iliac crest; however, this has been 
associated with increased morbidity.  Allograft or synthetic 
bone graft extenders carry the osteoconductive, and to a 
different extent, the osteoinductive properties, but no cells 
that will bring the fusion together.  Mesenchymal stem 
cells (MSCs) harvested from the bone marrow, adipose 
tissue, periosteum or skeletal muscle have been confirmed 
to differentiate into osteoblasts both in vitro and in vivo[12-17]. 
Adipose derived stem cells (ADSCs) harvested from fat 
pads, although less commonly utilized in experimental 
models, are multipotent cells that can differentiate into 
adipocytes, osteoblasts, chondrocytes, or myocytes when 
cultivated in the correct microenvironment[17-21]. Both 
types of  cells have been demonstrated to have a significant 
effect on spinal fusion in a multitude of  settings including 
a variety of  culturing mechanisms, scaffolds and added 
growth factors. Bone morphogenetic protein-2 (BMP-2) is 
a growth factor which is increasingly used in spinal fusion, 
mostly on an off-label basis, which may be the reason 
for the increased incidence of  complications associated 
with its utilization[22]. Genetically modified MSCs which 
were induced to express BMP-2 were reported to induce 
spinal fusion in mice after injection into the paraspinal 
musculature comparable, in terms of  rigidity, to the fusion 
achieved with instrumentation[23,24]. Fu et al[25] addressed 
the concern of  complications associated with BMP-2 by 
examining if  a reduced amount combined with MSCs 
would still yield acceptable fusion rates. They found 
that the group with MSCs seeded on alginate with a low 
dose of  BMP-2 achieved equal fusion rates to the group 
treated with an iliac crest autograft in a rabbit model[25]. 
Additional evidence that MSCs may potentially serve as 
a substitute for autograft or BMP-2 has been presented, 
however,  slightly lower fusion rates were reported for 
the group treated with MSCs vs the group treated with 
BMP-2 in a rabbit model[26]. Seo et al[27] attempted to 
induce higher fusion rates in a rat model by transplanting 
MSCs seeded on hydroxyapatite in addition to fibroblast 
growth factor-4, but found that the group treated without 
the addition of  the growth factor achieved the highest 
fusion rate[27]. Other than selection of  the appropriate 
growth factor, the level of  osteogenic differentiation of  
the cells may also play a role. One study reported that 
80% of  rabbit spines treated with MSCs cultured in 
osteogenic differentiation medium fused vs only 33.3% of  
spines treated with cells that had been cultured without 
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the addition of  differentiation medium[28]. The efficacy 
of  MSCs transplanted without amendments to culturing 
protocols, the addition of  genetic engineering or growth 
factors has been less encouraging in a variety of  animal 
models utilizing beta-tricalcium phosphate graft or porous 
ceramics[29-31]. Recently, stem cells derived from adipose 
tissue have become popular in the tissue engineering 
community, in part due to the ease of  cell harvesting from 
fat pads through liposuction. ADSCs expressing bone 
morphogenic proteins have proven effective for spinal 
fusion in animal models of  metabolic bone disease[32,33]. In 
a study comparing MSCs and ADSCs expressing BMP-2 
seeded on collagen sponges, fusion rates were encouraging 
and not significantly different in the two groups of  rat 
models[34]. Due to the relatively easier clinical access to 
ADSCs in the patient, greater attention to their potential 
role in spinal fusion is warranted. Overall, the use of  
stem cells in clinical spine fusion has been restricted due 
to the limited number of  cells which may be harvested 
through liposuction or bone marrow puncture. Cellular 
in vitro expansion is necessary to increase the number 
of  viable pluripotent cells. This represents the greatest 
burden in the bench to bedside translation of  stem cells 
in spine fusion, as two separate procedures, the availability 
of  sophisticated instrumentation and educated personnel 
decrease the cost-effectiveness of  the intervention[35-37].

Disc regeneration
Degenerative Disk Disease results from a complex 
process regulated by biomechanical forces and molecular 
changes within the disk. A healthy disk consists of  the 
nucleus pulposus rich in collagen type Ⅱ fibers with a 
high content of  proteoglycan and aggrecan to aid in the 
resistance to compression[38,39]. It is surrounded by the 
annulus fibrosus, rich in collagen type Ⅰ fibers which are 
arranged in a parallel fashion to withstand bending and 
twisting forces. A healthy disk is aneural and avascular due 
to the high proteoglycan content of  the nucleus pulposus, 
receiving most of  its nutrients by diffusion through the 
vertebral endplate[40]. Starting at the second decade of  
life, the progressive calcification of  the endplate results in 
a decrease in the nutrient supply to the disk[41]. This has 
been hypothesized to result in phenotypic changes leading 
to decreased synthesis of  proteoglycan and collagen 
type Ⅱ, and increased synthesis of  collagen type Ⅰ and 
Ⅲ as well as an increase in matrix metalloproteinase 
activity[41-44]. Overall, the change in the biochemical 
composition of  the disk results in gross morphologic 
changes and decreased disk height which contribute to the 
impingement of  nerves[45-47]. The clinical manifestation 
of  Degenerative Disk Disease in the form of  lower back 
pain is usually focused on conservative management 
including lifestyle- or work modifications, physical therapy, 
pain medication, acupuncture and epidural injections. If  
the symptoms are persistent, cause progressive deformity 
or neurologic compromise, surgery in the form of  disc 
replacement or spinal fusion is considered[48]. Growth 
factors, inflammatory cytokine antagonists and intracellular 
regulatory proteins are among the factors which have 

been demonstrated to result in encouraging regeneration 
of  nucleus pulposus cells in vitro and in vivo[49-53]. The utility 
of  these therapies in humans may be limited due to the 
rapid in vivo degeneration of  the molecules used for the 
treatment. Gene therapy, although successfully utilized 
in animal studies, has significant risks concerning the 
vectors used for gene transduction. Stem cell therapy for 
Degenerative Disk Disease is based on the premise of  
reconstruction of  the nucleus pulposus matrix. Nishimura 
and Mochida were the first to reimplant autologous 
nucleus pulposus cells in a disk herniation rat model and 
reported decreased degeneration of  the annulus fibrosus, 
the endplate and the remaining nucleus pulposus when 
compared to the control group[54]. As with bony fusion, 
most scientists have focused on MSCs for Degenerative 
Disk regeneration. MSCs can differentiate into cell 
lineages populating bone, cartilage, skeletal muscle and 
ligamentous tissue[15]. As the exact phenotype of  nucleus 
pulposus cells has yet to be determined, confirmation of  
the possibility of MSCs to differentiate into nucleus pulposus 
cells capable of  proteoglycan production does not exist. 
Nonetheless, researchers have demonstrated that various 
environmental stimuli and genetic manipulations may result 
in an MSC differentiating into a nucleus pulposus-like cell. 
Richardson et al[55] transfected MSCs using the transcription 
factor, SOX-9, and found that they differentiated into 
chondrocyte-like cells with the deposition of  nucleus 
pulposus matrix markers collagen type Ⅱ and aggrecan[55]. 
Risbud et al[56,57] experimentally cultured immobilized 
MSCs under hypoxic conditions with transforming growth 
factor-beta and found that these conditions prompted 
MSC differentiation towards nucleus pulposus-like 
cells[56,57]. Similar differentiation of  stem cells into cells 
which expressed nucleus pulposus-like phenotypic 
markers has been observed in rabbit studies. Sakai et al[58,59] 
studied the effect of  the transplantation of  MSCs into 
both healthy and degenerated disks. They found that the 
implanted cells differentiated into nucleus pulposus-like 
cells, producing collagen type Ⅱ and proteoglycan without 
harm to the rabbit[58,59]. The degenerated disks showed 
significant improvement in height and hydration[60].  
Allogenic MSCs were transplanted into the intervertebral 
disk in a rat model, and demonstrated viability and 
proliferation[61]. However, concerns regarding an immune 
reaction to allogenic stem cells in humans have limited 
the utilization of  such cells in clinical trials. Orozco et 
al[62] transplanted autologous MSCs into ten patients 
diagnosed with Degenerative Disk Disease[62]. They found 
improvements in pain and disability within three months 
of  treatment. Their study had severe limitations regarding 
the average age of  the patients (35 years) and the number 
of  patients (10). Nonetheless, these results exemplify the 
importance of  arranging larger clinical trials to ease the 
translation of  stem cell therapy from bench to bedside for 
patients suffering from Degenerative Disk Disease.

Spinal cord injury
Spinal cord injury (SCI) results from traumatic damage to 
the spinal cord which may have devastating consequences 
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in a rat SCI model[106]. All of  these studies reported that 
transplanted MSCs operate mainly through the creation of  
a favorable microenvironment by means of  the secretion 
of  a variety of  neurotrophic factors[107-111]. However, the in 
vivo differentiation of  MSCs into neuron-like cells has been 
documented to be inefficient[108-110]. Therefore, MSCs are as 
of  now, not capable of  directly repopulating and physically 
restoring the damaged tissue in SCI. Neural stem cells 
(NSCs) were sought as an option for stem cell therapy, 
specifically for their ability to overcome this deficit. NSCs 
are harvested from the subventricular zone and are capable 
of  differentiation into neurons, oligodendrocytes and most 
commonly astrocytes[112,113]. Nemati et al[114] reported that the 
transplantation of  NSCs into a contusion SCI in a monkey 
model facilitated hind limb performance recovery[114]. 
Lee et al[115] documented similar functional recovery in 
terms of  hind limb recovery paired with reduced lesions 
and an increased density of  axons and dendritic spines 
surrounding the transplanted NSCs in a rat model[115]. Piltti 
et al[116] examined the survival rates, migration and sensory 
fiber sprouting of  transplanted NSCs in a rat model in 
the secondary or subacute phase vs the tertiary or chronic 
phase of  SCI. They found that the number of  surviving 
transplanted cells was lower in the group treated during 
the tertiary phase, but that these cells had a stronger effect 
by increasing the number of  mature oligodendrocytes[116]. 
The experimental utilization of  stem cell therapy in SCI 
has been very limited to date. Several studies have reported 
sensory and motor improvements after 1-3 mo of  stem 
cell transplantations combined with various other cells 
and growth factors[117-121]. In contrast, Karamouzian et 
al[122] stated that despite the feasibility and safety of  cellular 
transplantations, the improvements in terms of  functional 
recovery were not statistically significant in their study[122]. 
The low numbers of  patients in these studies make it 
difficult to provide a definitive statement on the clinical 
potential of  stem cell transplantation for SCI. 

CONCLUSION
Additional areas of  interest which have not been clinically 
addressed with stem cell therapy are iatrogenic nerve 
and muscle injury caused by spinal surgery. Additional 
considerations are warranted with respect to the ethics 
and the cancerogenous risk of  embryonic stem cell 
therapy, the potential immune reaction to autologous cell 
transplantation as well as the clinical morbidity of  adult 
stem cell harvest. Overall, greater standardization of  
in vitro experimentation and animal models may aid the 
speed of  translation of  stem cell therapy in spinal surgery 
from bench to bedside.
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