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Spinal cord injury typically results in permanent disability. Many studies have indicated that transplantation of
several different types of stem cells promotes functional recovery in animal models of spinal cord injury.
A conceptually different approach to utilize stem cells for regenerative therapies may be recruitment of
endogenous neural stem cells resident in the adult spinal cord. We discuss the possibilities, risks, and
mechanisms for stem cells in spinal cord repair.
The spinal cord is the main relay for signals between the brain

and the body. Spinal cord injury completely or partially deprives

the individual of mobility and sensory input as well as autonomic

nervous system control below the level of the lesion. The major-

ity of spinal cord injuries affect the cervical segments, leaving

the patient para- or tetraplegic depending on the exact level

of the injury (Figure 1). The middle cervical segments control

breathing (the motoneurons that subserve the phrenic nerves

are located in segments C3–C5), and complete lesions above

this level are lethal unless assisted breathing is provided from

immediately after the injury. Spinal cord injury is most com-

monly caused by high-energy trauma, for example from sports

or traffic accidents, and the majority of patients are 10–40 years

old at the time of the injury. The annual incidence is 15–40 per

million, and since the long-term survival is good in developed

countries, there are a large number of people who are chroni-

cally disabled by spinal cord injury (Sekhon and Fehlings,

2001). There is currently no curative therapy, and the care in

the acute phase is limited to high-dose corticosteroid treatment

to reduce inflammation and surgical stabilization and decom-

pression to reduce further damage. In the subacute to chronic

phase, treatment focuses on symptomatic relief (against, for ex-

ample, pain and opportunistic infections) and physiotherapy

(Baptiste and Fehlings, 2007). Spinal cord injury results in enor-

mous personal suffering and, due to its chronic disabling nature,

substantial cost to society.

A combination of factors is responsible for the lack of neural

regeneration and minimal functional recovery generally obser-

ved after spinal cord injury. The injury severs axons, and the dis-

tal segment of the axon (which is isolated from the neuronal cell

body) degenerates. The proximal axon segment typically sur-

vives but fails to regrow and reinnervate its targets. The lack of

axonal regeneration is not primarily due to an inherent lack of

axonal growth potential, but rather the presence of axonal

growth inhibitors in the adult central nervous system. Myelin-

associated proteins and the glial scar, which forms at the injury

site and in denervated axonal tracts, inhibit axonal growth

(Busch and Silver, 2007; Fawcett, 2006; Kaneko et al., 2006;

Schwab, 2004).

The role of the glial scar is complex and has been discussed

for more than a century. Strong support for the glial scar as

a major negative factor after spinal cord injury comes from

the identification of chondroitin sulfate proteoglycans as axonal

growth-inhibiting molecules expressed by reactive astrocytes
16 Cell Stem Cell 3, July 2008 ª2008 Elsevier Inc.
(Busch and Silver, 2007). Moreover, studies of mutant mice

lacking the genes encoding the intermediate filament proteins

glial fibrillary acidic protein (GFAP) and Vimentin, highly ex-

pressed by reactive astrocytes, demonstrated impaired scar

formation accompanied by enhanced axonal sprouting and im-

proved functional recovery (Menet et al., 2003; Pekny et al.,

1999). However, other studies have shown a beneficial role of

the glial scar during the acute phase (1–2 weeks) after spinal

cord injury. Elimination of reactive astrocytes or preventing

their migration and scar formation after injury resulted in a fail-

ure of blood-brain barrier repair accompanied by massive in-

flammatory cell infiltration and increased loss of neurons and

oligodendrocytes with a worse functional outcome (Faulkner

et al., 2004; Okada et al., 2006). Moreover, transgenic mice

showing enhanced astrocyte migration and premature glial

scar formation facilitated recovery (Okada et al., 2006). Thus,

an acute astrocytic response appears important to limit and re-

strain the inflammatory response, but this may be at the ex-

pense of reduced axonal regrowth. The glial scar reduces the

possibility of grafted cells to migrate and integrate. The major-

ity of studies have therefore investigated the effect of trans-

planting cells 1–2 weeks after injury (Ogawa et al., 2002). It is

more difficult to envisage a cell-based therapy in the chronic

phase (Okano, 2002).

In addition to axon transection, spinal cord injury causes

death of multiple cell types at or close to the site of injury.

Much of the cell death is due to secondary mechanisms, often

triggered by ischemia, such as lipid peroxidation, edema, and

an increase in free radicals and excitotoxic levels of transmit-

ters (Sekhon and Fehlings, 2001). The loss of neurons, which

are not regenerated in the adult spinal cord, results in impaired

function of the affected segment. However, probably more del-

eterious than the neuronal death is the loss of oligodendrocytes

and deficient expression of myelin-associated genes. Spinal

cord injuries are most commonly incomplete in man, leaving

spared tissue connecting the spinal cord above and below

the lesion, but the function of remaining axons is often compro-

mised due to demyelination. Without insulating sheaths of my-

elin, spared axons close to but not directly affected by the in-

jury become less efficient in their ability to conduct electrical

impulses (McDonald and Belegu, 2006). Voltage-gated ion

channels are arranged in the axonal membrane in relation to

the myelin sheath, with sodium channels clustered in the short

stretches of axon segment between two adjacent myelin
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sheaths (nodes of Ranvier) and potassium channels in the para-

nodal region. Demyelination results in rearrangement of ion

channels, which further impairs propagation of action potentials

(Nashmi and Fehlings, 2001). Moreover, chronically demyeli-

nated axons are vulnerable to degeneration. This becomes ap-

parent in multiple sclerosis, where axonal and neuronal loss is

thought to be caused by the demyelination (Grigoriadis et al.,

2004).

The effects of axon transection, neuronal death, and demye-

lination on overall signal transmission are compounded by other

tissue reactions to the injury, including inflammatory and im-

mune responses, cyst formation, and vascular changes (Sekhon

and Fehlings, 2001). Given this complex nature of spinal cord in-

jury, many conceptually different ways to facilitate recovery

have been investigated. It is unlikely that any one strategy alone

will lead to very dramatic functional improvement. However,

even seemingly small improvements in function may have

a large impact on a patient’s life. For example, the ability to

grip with the hands may make the difference of being able to

live an independent life or not. Regaining arm and hand function

has the highest priority for quadriplegics, and regaining sexual

function has the highest priority for paraplegic patients (Ander-

son, 2004).

Here, we will focus on the advantages, opportunities, and

challenges presented by stem cell-based therapeutic strategies

for spinal cord injuries, and the reader is referred to recent

reviews covering other therapeutic strategies (Fawcett, 2006;

Rossignol et al., 2007; Schwab, 2004). There are two concep-

tually different ways to employ stem cells for spinal cord repair.

First, one may transplant stem cells, or cells derived from stem

cells, to the injured spinal cord. Second, endogenous neural

stem cells resident in the adult spinal cord could potentially

be recruited or modulated to promote recovery. We will discuss

Figure 1. Spinal Cord Injury Results in
Disruption of Motor Control and Sensory
Input below the Level of the Lesion
Spinal cord injury is most often caused by trauma,
which results in dislocation of vertebrae and dam-
age to the spinal cord. Motor control and sensory
input is lost below the level of the lesion (shaded
area in figures to the left) due to the severance of
long ascending sensory (red) and descending
motor (green) axons. The local circuitry, including
central pattern generators (CPG) responsible for
coordinated locomotor function, remains largely
intact in uninjured segments.

these two possible avenues for stem

cells in spinal cord repair. A much larger

number of studies have addressed the

possibility to improve recovery after spi-

nal cord injury by stem cell transplanta-

tion, rather than recruitment of endoge-

nous cells, and this topic has been the

subject of several recent reviews (Enz-

mann et al., 2006; Okano et al., 2003;

Parr et al., 2007; Sharp and Keirstead,

2007). We therefore limit the description

of stem cell transplantation strategies to summarize the effi-

cacy and mechanistic insights.

Transplantation of Stem Cells and Stem Cell-Derived
Cells to the Injured Spinal Cord
Attempts to improve recovery after spinal cord injury by trans-

planting cells or tissue has a long history, and several ap-

proaches have been taken to clinical trials (reviewed in Tator,

2006). Transplantation of, for example, autologous or fetal tissue

is, however, often impractical for large-scale clinical use. Stem

cells offer an attractive alternative, not least because of their

potential unlimited supply, which may allow the development

of more easily applied therapies.

A large number of studies have evaluated the effect of trans-

planting a variety of stem cells or stem cell-derived cells in

spinal cord injury models, mainly in rodents, and remarkably,

many studies using different strategies have indicated benefi-

cial effects. There are difficulties in directly comparing studies

because of the varying degree of characterization of the trans-

planted cells, different injury models, and transplantation at dif-

ferent time points after the injury. The evaluation of the effect

has also often been done in different ways or to different

degrees.

In spite of many studies indicating a beneficial role of stem cell

transplantation in spinal cord injury, there is still limited mecha-

nistic insight. The simplest way to explain how transplanted cells

may promote recovery is by replacement of lost cells. This is

probably an important factor in several strategies, mainly where

lost oligodendrocytes are replaced and remyelination by graft-

derived cells have been demonstrated (Sharp and Keirstead,

2007) (Figure 2). However, in other situations, functional benefits

have been reported without any obvious replacement of neural

cells. This is most striking in the case of nonneural cells, such
Cell Stem Cell 3, July 2008 ª2008 Elsevier Inc. 17
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Figure 2. Mechanisms by which Transplanted Stem Cell-Derived Cells May Facilitate Regeneration
It is often difficult to establish the mechanism by which transplanted cells may facilitate functional recovery. Likely mechanisms include creating a permissive
substrate for axonal growth, providing cells that remyelinate spared but demyelinated axons, and supplying trophic support reducing the damage and rescuing,
for example, neurons and oligodendrocytes. Transplanted cells may in addition (not depicted) enhance axonal plasticity and replace lost neurons to reconstruct
local circuitry.
as mesenchymal cells or macrophages, where no neurons or

glial cells were generated. The mechanism here appears to be

indirect, such as providing trophic support, modulating the

inflammatory response, or providing a substrate for axonal

growth (Parr et al., 2007) (Figure 2).

The pluripotency and possibility of virtually unlimited expan-

sion of embryonic stem cells (ESCs) make them attractive for

the derivation of cells for transplantation to the injured spinal

cord. Oligodendrocyte progenitor cells can be efficiently derived

from murine and human ESCs (Brüstle et al., 1999; Nistor et al.,

2005) and give rise to mature myelinating oligodendrocytes

when transplanted to the central nervous system (Brüstle et al.,

1999; Keirstead et al., 2005). McDonald, Choi, and colleagues

first evaluated the potential of neuralized mouse ESCs for pro-

moting recovery after spinal cord injury and demonstrated in

situ oligodendrocyte differentiation and functional improvement

(McDonald et al., 1999). More recently, human ESC-derived oli-

godendrocyte progenitor cells transplanted to the rat were

shown to similarly result in oligodendrocyte differentiation,

remyelination, and locomotor improvement following acute

(7 days after injury), but not chronic (10 months) transplantation

(Keirstead et al., 2005).

ESCs are well suited to produce neural progeny, but the

caveats with using allogeneic cells has fueled interest in explor-

ing the neuroregenerative potential of adult somatic stem cells.

There are many studies that describe transplantation of cells,

with varying degree of characterization when it comes to stem

cell features, from, for example, bone marrow, umbilical cord,

blood, and skin to the injured spinal cord (Parr et al., 2007).

The initial rationale for transplanting, for example, bone mar-

row-derived cells to the injured spinal cord was based on sev-

eral reports indicating that both hematopoietic stem cells and

mesenchymal cells had the potential to generate neurons and

glial cells. However, a large number of subsequent studies

failed to reproduce the initial results or provided alternative

explanations as to the expression of neural markers by bone
18 Cell Stem Cell 3, July 2008 ª2008 Elsevier Inc.
marrow-derived cells (Meletis and Frisén, 2003). Nevertheless,

although bone marrow-derived cells do not appear to generate

appreciable numbers of neural cells, there are many studies re-

porting functional improvement after transplantation of mesen-

chymal cells to the injured spinal cord (Parr et al., 2007). Rather

than being a replacement therapy, transplanted mesenchymal

cells appear to affect spinal cord repair indirectly, and sug-

gested mechanisms include production of growth factors, cyto-

kines, and neurotrophic factors; promotion of proliferation of

endogenous progenitor cells; and the generation of favorable

substrate for axonal growth or effects on the vasculature (Parr

et al., 2007).

Many studies have investigated the effects of grafting in vitro

propagated neural stem cells or committed neuronal or glial

progenitors to the injured spinal cord. Most of the studies per-

formed in rodents that have investigated recovery demonstrate

a beneficial effect of the grafted cells on locomotor function.

The transplanted neural stem cells typically give rise mainly to

astrocytes and more limited numbers of neurons or oligodendro-

cytes (Enzmann et al., 2006; Hofstetter et al., 2005; Karimi-

Abdolrezaee et al., 2006; Ogawa et al., 2002; Pfeifer et al.,

2006). Astrocytes produce several neurotrophic factors, and

one likely mechanism by which transplanted neural stem cells

may promote recovery is by sustaining the survival of host cells

and potentially by supporting some local axonal sprouting

(Hofstetter et al., 2005). Transplanted neural stem cells also

give rise to oligodendrocytes after transplantation, although

typically to a lesser degree (Enzmann et al., 2006; Hofstetter

et al., 2005; Karimi-Abdolrezaee et al., 2006; Ogawa et al.,

2002; Pfeifer et al., 2006). Remyelination and the associated

reorganization of axonal ion channels likely contribute to the

recovery of some function after neural stem cell transplantation

(Eftekharpour et al., 2007). Promoting the generation of oligo-

dendrocyte at the expense of astrocytes by transplanted neural

stem cells further facilitates sensory and locomotor recovery

(Hofstetter et al., 2005).
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Recruitment of Endogenous Spinal Cord Neural Stem
Cells for Repair
The presence of neural stem cells in the adult central nervous

system raises the possibility that modulation of endogenous

stem cells may offer an alternative therapeutic strategy to cell

transplantation. Transplantation of in vitro propagated neural

stem cells derived from the adult spinal cord can promote func-

tional recovery in rodent injury models (Hofstetter et al., 2005),

demonstrating that endogenous adult spinal cord stem cells

can facilitate functional recovery but normally fail to do so effi-

ciently. A tantalizing prospect is to in situ, without any cell culture

or grafting, reproduce the effect induced by the expansion and

transplantation of the endogenous neural stem cells to promote

recovery. This would offer a noninvasive autologous therapy that

could circumvent many of the limitations and risks with trans-

plantation strategies. However, it is difficult to predict today

whether this is a realistic scenario.

The evidence for the existence of multipotent neural stem

cells in the adult spinal cord is largely based on in vitro studies.

Cells with sustained self-renewal capacity and the potential to

differentiate into neurons, astrocytes, and oligodendrocytes

can be propagated in vitro (Johansson et al., 1999; Shihabud-

din et al., 1997; Weiss et al., 1996). Such cells with in vitro neu-

ral stem cell properties are present throughout the rostrocaudal

axis of the adult spinal cord (Shihabuddin et al., 1997; Weiss

et al., 1996). Neural stem cells propagated from the adult spinal

cord differ to some degree from the more well-studied forebrain

neural stem cells, where neurogenesis is maintained through-

out the organism life. Whereas forebrain neurospheres only

require EGF (or related growth factors) as mitogen, adult spinal

cord stem cell isolation requires FGF-2 (Shihabuddin et al.,

1997; Weiss et al., 1996). Neural stem cells expanded in vitro

also differ in their expression of positional markers depending

on the level of the neuraxis from which they derive, and this

identity is maintained to at least some degree through passag-

ing (Hitoshi et al., 2002).

Resident cells are activated and produce progeny in res-

ponse to spinal cord injury, but the lack of functional recovery

after a lesion all too clearly demonstrates that this is not suffi-

cient to promote regeneration. In fact, there is no evidence

today that recruitment of endogenous cells is beneficial at all,

and it is possible that it rather affects the outcome negatively,

for example, by contributing to scar formation. To be able to

develop rational strategies to modulate endogenous neural

stem cells in the adult spinal cord, it is necessary to identify

adult spinal cord stem and progenitor cells and gain detailed

knowledge of their function and response to injury as well as

their molecular regulation.

Identity of Adult Spinal Cord Neural Stem Cells
The identity of the cells in the adult spinal cord that display neural

stem cell properties in vitro is becoming increasingly clear.

Microdissection or injection of a fluorescent label indicated

that all, or close to all, neurosphere-initiating cells reside close

to the central canal, the narrow extension of the ventricular sys-

tem spanning the length of the spinal cord (Johansson et al.,

1999; Martens et al., 2002). Other studies, in contrast, reported

that similar numbers of clones could be propagated from both
the medial and lateral parts of the spinal cord (Yamamoto

et al., 2001a; Yoo and Wrathall, 2007). However, whereas the

neurospheres from the central canal region are multipotent and

can be expanded for many passages (Johansson et al., 1999;

Martens et al., 2002; Meletis et al., 2008), the clones analyzed

from the medial and lateral aspects of the spinal cord could

only be expanded for two passages, and only a minority were

multipotent with the capacity to generate neurons (Yamamoto

et al., 2001a; Yoo and Wrathall, 2007). This suggests the exis-

tence of at least two different cell populations: one multipotent

population with extended self-renewal capacity residing close

to the central canal, and another population with more limited

self-renewal capacity, mainly restricted to glial lineages, present

in the parenchyma.

Several lines of evidence suggest that the parenchymal pro-

genitors can be found within a population of cells expressing

one or several of the partly overlapping markers NG2, Olig2,

and Nkx2.2, and that they constitute the majority of proliferating

cells in the uninjured adult spinal cord (Ohori et al., 2006)

(Figure 3). These cells appear somewhat heterogeneous, with

some being committed to the oligodendrocyte lineage and

others possessing a broader glial or even neuronal differentiation

potential (Horky et al., 2006; Ohori et al., 2006).

Most of the studies to date addressing the identity of adult

spinal cord neural stem cells have used indirect methods to label

cells. An important limitation in many studies is the lack of cell

type specificity with the detection methods employed to study

endogenous stem/progenitor cells (Breunig et al., 2007). Studies

that have used BrdU incorporation to label dividing cells have

helped to identify cells that proliferate under normal circum-

stances and in response to injury but cannot provide information

on lineage relationships (Horky et al., 2006; Horner et al., 2000;

Yang et al., 2006). Retroviral infection permanently labels prog-

eny of proliferating cells without cell-type specificity. It is not

possible to inject virus without inducing injury at the same

time, which is why it is mostly useful for studies in the injured sit-

uation (Horky et al., 2006; Ohori et al., 2006). Finally, labeling

cells with fluorescent labels or using transgenic animals express-

ing reporter genes such as LacZ or GFP under the control of spe-

cific promoters does not allow long-term tracking of the progeny

of targeted cells, as the labels are diluted or reporter genes are

not expressed by the progeny (Frisén et al., 1995; Johansson

et al., 1999; Mothe and Tator, 2005). Important knowledge will

be gained by using the rapidly expanding number of cell type-

specific inducible labeling systems, where specific promoters

are used to drive, for example, the expression of inducible Cre

recombinase. We have recently generated mice driving the ex-

pression of tamoxifen-inducible Cre (CreER) under the control

of Nestin or FoxJ1 regulatory sequences (Carlén et al., 2006;

Meletis et al., 2008). In both these transgenic lines, CreER

expression is confined to ependymal cells in the adult spinal

cord. Derivation of neurospheres from such mice, in which epen-

dymal cells were genetically labeled, demonstrated that close to

all neural stem cell activity capacity resides within that cell pop-

ulation under standard neurosphere conditions (Meletis et al.,

2008). There are also mice expressing inducible Cre under the

control of the Olig2 promoter (Takebayashi et al., 2002), which

should aid in the elucidation of the role of candidate parenchymal

progenitor cells.
Cell Stem Cell 3, July 2008 ª2008 Elsevier Inc. 19
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Figure 3. Cell Proliferation in the Adult
Spinal Cord
There is little cell division in the uninjured adult
mouse spinal cord, but both vimentin+ ependymal
cell and Olig2+ parenchymal progenitor cell prolif-
eration is apparent (McTigue et al., 2001; Ohori
et al., 2006; Yamamoto et al., 2001b; Meletis
et al., 2008) after administering BrdU for 4 weeks
in the drinking water. Arrows point to double-
positive cells. Scale bars, 100 mm (left panel) and
20 mm (right panel).
Response of Endogenous Neural Stem/Progenitor
Cells to Injury
Spinal cord injury results in rapid cell loss at the lesion, with typ-

ically about 50% of astrocytes and oligodendrocytes, and an

even larger proportion of neurons, being lost already within the

first day in rodent injury models (Grossman et al., 2001; Lytle

and Wrathall, 2007). The number of oligodendrocytes increases

with time, and many axons become remyelinated and astrocyte

numbers increase as the glial scar forms (Figure 4). Pre-existing

oligodendrocytes do not divide, and proliferation of astrocytes

appears limited, indicating that oligodendrocytes and astro-

cytes, at least in part, are regenerated from stem or progenitor

cells after a spinal cord injury (Blakemore and Patterson, 1978;

Horky et al., 2006; Keirstead and Blakemore, 1997; Yang et al.,

2006).

Cell proliferation is rather limited in the intact spinal cord and is

thought to serve a low-grade turnover of glial cells. After injury,

a peak of cell division is observed 1–3 days following injury,

and cells in at least three distinct locations proliferate at this

time: in the ependymal region surrounding the central canal,

the parenchyma, and the periphery (Horky et al., 2006). An

increased number of neurospheres can be isolated from the

injured spinal cord, suggesting that neural stem/progenitor cells

proliferate in response to injury (Xu et al., 2006).
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Ependymal cells divide rarely in the uninjured spinal cord

(Figure 3), but a lesion induces a massive increase in their prolif-

eration within 24 hr (Horky et al., 2006; Johansson et al., 1999;

Kojima and Tator, 2002). The majority of proliferating ependymal

cells have a cleavage plane parallel to the ependymal surface af-

ter a spinal cord injury, suggesting that one daughter cell may re-

main in the ependymal layer as one daughter cell migrates away

(Johansson et al., 1999). Asymmetric cell division can result in

differential distribution of fate determinants in the two daughter

cells, allowing one to maintain stem cell features and the other

to differentiate (Doe, 2008). Ependymal cells that divide in re-

sponse to spinal cord injury appear to segregate Notch1,

a well-characterized receptor associated with neural stem cell

features (Louvi and Artavanis-Tsakonas, 2006), asymmetrically

to the daughter cell that remains in the ependymal layer (Johans-

son et al., 1999). Tracing of ependymal cell progeny have dem-

onstrated migration to the lesion site, where the majority of cells

differentiate to astrocytes and contribute to scar formation

(Frisén et al., 1995; Johansson et al., 1999; Meletis et al., 2008;

Mothe and Tator, 2005). Ependyma-derived astrocytes consti-

tute approximately 20% of the cells at the lesion site 2 weeks af-

ter the injury and appear to remain there permanently. Ependy-

mal cells also give rise to a smaller number of remyelinating

oligodendrocytes after injury (Meletis et al., 2008). Injury-induced
Figure 4. Endogenous Stem and Progenitor
Cells in the Intact and Injured Spinal Cord
Cells in the ependymal layer, lining the central
canal, have in vitro neural stem cell properties
and generate mainly astrocytes in response to
a spinal cord injury (Johansson et al., 1999; Meletis
et al., 2008) (here an incision in the dorsal funicu-
lus, lesion area marked by hatched lines). Paren-
chymal progenitors, many of which express
Olig2, mainly generate oligodendrocytes after in-
jury (Horky et al., 2006; Ohori et al., 2006). The
left and middle panels are from uninjured animals,
and the right panels are from an injured animal.
Vimentin is expressed by ependymal cells and
some reactive astrocytes; NeuN labels neurons;
and GFAP, which is greatly induced after injury,
labels astrocytes. Scale bar, 100 mm.



Cell Stem Cell

Review
proliferation of ependymal cells is restricted to the lesioned seg-

ment, and a progressive ascending central canal dilatation ros-

tral to the lesion with thinning of the ependyma and ependymal

disruption has been described (Radojicic et al., 2007).

Proliferating cells in the parenchyma include NG2+/Olig2+/

Nkx2.2+ progenitors (McTigue et al., 2001; Ohori et al., 2006;

Yamamoto et al., 2001b) (Figure 3). Interestingly, BrdU labeling

of cells proliferating in the uninjured spinal cord (i.e., mainly

parenchymal progenitor cells) showed that this population is

partly depleted by a lesion. The number of BrdU-labeled cells

was greatly increased 1 month later compared to uninjured ani-

mals, suggesting some regeneration or long-lasting progeny of

parenchymal progenitor cells (Horky et al., 2006). Retroviral

labeling in the parenchyma showed that labeled cells, mainly

NG2+ cells, give rise to progeny with more mature oligodendro-

cyte features (Horky et al., 2006; Ohori et al., 2006), and this is

likely to be the main source of new oligodendrocytes.

Invading bone marrow-derived macrophages and granulo-

cytes are also actively proliferating but represent a major fraction

of the proliferating population only 1 week–1 month after injury

(Horky et al., 2006; Kojima and Tator, 2000). Moreover, Schwann

cells from the nerve roots can migrate into the lesion site and par-

tially participate in the remyelination process (Talbott et al.,

2005).

Can Endogenous Neural Stem and Progenitor Cells
Be Modulated to Promote Recovery?
The main fate of the progeny of endogenous stem and progenitor

cells after spinal cord injury is oligodendrocytes and astrocytes

(Figure 4). The generation of oligodendrocytes by endogenous

stem/progenitor cells contributes to remyelination and is likely

to underlie some restoration of function (Keirstead and Blake-

more, 1997). It is attractive to consider ways to facilitate this pro-

cess. In contrast, the generation of astrocytes by endogenous

stem/progenitor cells and the contribution to glial scar formation

may potentially inhibit axonal regrowth. It is necessary to better

understand the properties and functional role of cells derived

from endogenous stem/progenitor cells in order to consider op-

timal strategies to modulate their response. Astrocytes are het-

erogeneous, and it is not presently clear to what degree different

subtypes play different roles after injury. The glial scar is com-

posed of both local astrocytes that become hypertrophic in

response to the injury and new astrocytes derived from stem/

progenitor cells that invade the lesion area. It is presently not

clear whether these different astrocyte populations have differ-

ent functions or affect the ability of regeneration differently.

In the same way as many transplantation strategies aim to pro-

mote remyelination of axons, the most readily apparent aim of

modulating endogenous stem/progenitor cells may be to pro-

mote the differentiation of their progeny to oligodendrocytes

and to increase the number of such cells. Several studies have

indicated that it is possible to modulate the response of endog-

enous stem/progenitor cells. Intracerebroventricular infusion of

FGF-2 alone or with EGF resulted in a marked increase in prolif-

eration and nestin expression by ependymal cells (Kojima and

Tator, 2002; Martens et al., 2002; Xu et al., 2006). Retroviral ex-

pression of Mash1 in parenchymal progenitor cells resulted in

enhanced oligodendrocyte differentiation and maturation at the

expense of astrocyte production, but these newly generated
oligodendrocytes were no longer observed 1 month after injury

(Ohori et al., 2006).

Transplantation studies have taught us that the fate of differen-

tiating neural stem cell progeny is to a large degree dictated by

the host environment, since the same cells may predominantly

produce neurons if transplanted to a neurogenic niche but mainly

astrocytes when grafted to a nonneurogenic region such as the

spinal cord (Shihabuddin et al., 2000). Most studies have failed to

detect neurogenesis in the adult rodent or primate spinal cord

(Horky et al., 2006; Horner et al., 2000; Kojima and Tator,

2002; Mothe and Tator, 2005; Ohori et al., 2006; Yang et al.,

2006). However, it appears that small numbers of neurons may

be generated under certain circumstances (Danilov et al.,

2006; Ohori et al., 2006). The strong influence of factors promot-

ing glial differentiation in the adult spinal cord is apparent in neu-

ral stem cells engineered to ectopically express the proneural

gene Neurogenin2; this results in close to complete neuronal dif-

ferentiation in vitro but does not result in any large increase in the

number of neurons when the cells are transplanted to the spinal

cord (Hofstetter et al., 2005). Thus, the gliogenic cues in the adult

spinal cord can override a strong intrinsic determinant of neuro-

nal differentiation. The field of developmental neurobiology is

rapidly increasing our knowledge of the molecular basis of fate

choice, and this may aid in the development of strategies to pro-

mote oligodendroglial differentiation from endogenous stem/

progenitor cells in the injured spinal cord.

Comparison of Different Potential Stem Cell-Based
Repair Strategies
A pharmacological therapy modulating the response of endoge-

nous neural stem cells to promote recovery would have an

advantage over transplantation strategies in that it would be non-

invasive. Transplantation of allogenic cells also calls for immuno-

suppression, with serious side effects. Immunoincompatibility

could also result in rejection reactions, which may lead not

only to the loss of the grafted cells, but also to inflammatory

reactions that cause secondary damage. It remains unclear

whether it may be possible to modulate neural stem cells in

situ to accomplish a similar promotion of recovery, as seen after

cell transplantation. Moreover, it is possible that the normal

response to injury and scar formation is optimal in terms of

regaining tissue integrity, preventing further damage, and con-

taining inflammatory cells. Thus, modulating the response of

endogenous neural stem cells to generate, for example, more re-

myelinating oligodendrocytes at the expense of scar-forming

astrocytes may potentially pose a risk in decreasing the recovery

of tissue integrity.

One uncertainty with the endogenous stem cell recruitment

approach is the limited information from the adult human spinal

cord. Stem cells isolated from the fetal human spinal cord reca-

pitulate the integration, migration, and differentiation pattern of

well-studied rodent stem cells upon transplantation into a rodent

spinal cord injury (Yan et al., 2007). Furthermore, a recent study

demonstrated the expansion of cells with in vitro neural stem cell

properties from the adult human spinal cord (Dromard et al.,

2008).

Different stem cell sources have potential advantages and dis-

advantages for transplantation. The main benefit of neural stem

cells, compared to other stem cell sources for spinal cord repair,
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lies in their commitment to produce neurons and glial cells. How-

ever, fetal neural stem cells require aborted human fetuses,

which is a limited and ethically controversial source. Moreover,

a therapy based on fetal tissue may be difficult to make widely

available because of limited expansion capability, and that con-

stitutes an impediment to making easily distributable cells. Adult

neural stem cells are not as easily propagated to large numbers,

and autologous therapies carry risks with cell harvesting and

much work for each patient, making it impractical.

The majority of spinal cord injury patients suffer from chronic

neuropathic pain, which decreases the quality of life (Siddall

and Loeser, 2001). Transplantation of adult spinal cord neural

stem cells promotes functional recovery but also increases neu-

ropathic pain in rats (Hofstetter et al., 2005). The rats displayed

signs of allodynia (a normally nonnoxious stimulus is perceived

as painful), probably due to stem cell-derived astrocytes pro-

moting sprouting of sensory axons. It is important in the evalua-

tion of potential clinical trials to evaluate the risk of neuropathic

pain. In the same way as these grafted cells may promote axonal

sprouting to form new sensory circuitry, it is difficult to exclude

the possibility that they also may promote the formation of other

aberrant connections, which potentially could cause unwanted

side effects.

The obvious benefit of nonneural somatic stem cells is their

comparatively easy access for autologous use. However, if

in vitro culture or selection is required, it immediately becomes

more difficult to envisage a standardized large-scale therapy.

Another caveat when considering bone marrow-derived cells

for spinal cord repair is the limited mechanistic insight into how

these cells may support recovery, which makes it difficult to

predict the effect in the human situation.

ESC-derived myelinating glial progenitor cells can be derived

with rather high efficiency and can likely be produced in close

to unlimited quantities under standardized conditions. A caveat

with using ESCs is that they are not autologous, requiring immu-

nosuppression. A potential alternative to ESCs, avoiding the

need for immunosuppression, may be patient-derived induced

pluripotent stem cells (iPSCs) (Yamanaka, 2007). This would

also circumvent the ethical concerns associated with ESCs.

However, the required time for establishing iPSC lines may limit

their use in the acute or subacute situation.

A major caveat to the use of ES-derived cells is the well-recog-

nized risk of teratoma formation after transplantation. The risk of

tumors is problematic in any stem cell therapy, but even more

so when a very small tumor can cause large problems, as when

growing in a limited space such as the spinal canal. Moreover,

surgical removal of a tumor growing in the spinal cord, even

though it is benign, is likely to result in considerable damage of

bordering intact tissue. However, whereas it appears difficult to

circumvent tumor formation after transplantation of ESCs differ-

entiated toward a neuronal fate, teratomas have not yet been

reported after transplantation of ESC-derived oligodendrocyte

progenitors. ESC-derived cells currently appears to be the most

attractive cell source for spinal cord repair, not least because of

the possibility to scale up the production of cells and efficacy.

Perspectives
Spinal cord injury is often mentioned among the first possible

new indications for future stem cell-based transplantation thera-
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pies (Vogel, 2005). In fact, a rather large number of spinal cord

injury patients have already received transplants of stem cells

and other cell types. In spite of the limited understanding of the

efficacy, safety, and mechanisms by which bone marrow stem

cells may promote spinal cord regeneration, phase I safety clin-

ical transplantation trials have already been initiated (Callera and

do Nascimento, 2006; Park et al., 2005; Tator, 2006; Yoon et al.,

2007) and are today, without any study proving efficacy, offered

commercially to patients at private clinics (see, for example,

http://www.stemcellschina.com/ or http://www.xcell-center.

com/). A group of independent scientists, not associated with

any transplantation clinic, evaluated a small number of patients

before and after treatment at a private clinic in China. They failed

to find any positive effects of intraspinal injection of cultured cells

from the brains of aborted human fetuses but found serious side

effects in several of the patients, including meningitis in five out

of seven patients (Dobkin et al., 2006). A thorough evaluation

by an international consortium is being planned (Cyranoski,

2007).

The majority of spinal cord injury studies and initial evaluations

of potential therapeutic strategies are typically performed in

rodents. There are, however, important differences between

the rodent and human spinal cord in, for example, the pathways

of the motor systems and behavior. Although rodent studies are

necessary and important, studies in nonhuman primates will in

most cases be necessary to better predict both efficacy and

safety in the human situation before entering clinical trials (Cour-

tine et al., 2007). It will also be important to evaluate the outcome

and potential side effects in experimental animals over much lon-

ger time courses than is often done, since patients in many cases

are expected to live several decades after the treatment.

A stem cell-based transplantation strategy that proves suc-

cessful in animal models and where mechanisms are understood

still faces practical challenges to be translated to the clinic. It will

need to be made easily accessible for hospitals, and this ideally

includes the ability to bank cells and to be able to distribute them

as an off-the-shelf product. The more simplified the cell handling

techniques required by the clinic that will transplant the cells, the

greater potential it has to become a widely used therapy.

Strategies to affect endogenous neural stem cells in the adult

spinal cord today appear to be a more distant scenario. Efforts

must be first put into acquiring a better knowledge of this stem

cell reservoir. However, this is an exciting line of research that

ultimately may result in pharmacological therapies circumvent-

ing the need for invasive and allogeneic strategies.
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