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Abstract

Depression is a devastating mood disorder and a leading cause of disability worldwide.

Depression affects approximately one in five individuals in the world and represents

heavy economic and social burdens. The neurobiological mechanisms of depression are

not fully understood, but evidence highlights the role of monoamine neurotransmitter

balance. Several antidepressants (ADs) are marketed to treat depression and related

mood disorders. However, despite their efficacy, they remain nonspecific and unsafe

because they trigger serious adverse effects. Therefore, developing new molecules for

new targets in depression has become a real necessity. Eight years ago, spadin was

described as a natural peptide with AD properties. This 17-amino acid peptide blocks

TREK-1 channels, an original target in depression. Compared to the classical AD drugs

such as fluoxetine, which requires 3–4 weeks for the AD effect to manifest, spadin acts

rapidly within only 4 days of treatment. The AD properties are associated with increased

neurogenesis and synaptogenesis in the brain. Despite the advantages of this fast-acting

AD, the in vivo stability is weak and does not last for >7 h. The present review

summarizes different strategies such as retro-inverso strategy, cyclization, and

shortening the spadin sequence that has led to the development and optimization of

spadin as an AD. Shortened spadin analogs present increased inhibition potency for

TREK-1, an improved AD activity, and prolonged in vivo bioavailability. Finally, we also

discuss about other inhibitors of TREK-1 channels with a proven efficacy in treating

depression in the clinic, such as fluoxetine.
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1. Introduction

Depression is a devastating mental disorder that affects one in five individuals and is

considered as a leading cause of disability worldwide (Nestler et al., 2002; 

Otte et al., 2016). Thus, the economic burden is huge for governments and particularly for

patients suffering from depression (Kessler, 2012). Depression is a product of several and

complex molecular and cellular mechanisms that are difficult to identify. One of the main

common hypotheses that attempt to explain the neurobiology of depression is the

imbalance in monoamine levels in the brain known as the “monoaminergic theory of

depression” (Delgado, 2000). Presently, the majority of antidepressant (AD) drugs aim to

restore the physiological amount of three central monoamines (serotonin (5-HT),

norepinephrine (NA), and dopamine (DA)) in the synaptic cleft. Indeed, this is achievable

by blocking the serotonin transporter (SERT), norepinephrine transporter (NAT), and

dopamine transporter (DAT) responsible for the reuptake of 5-HT, NA, and DA,

respectively, in the brain (Tatsumi, Groshan, Blakely, & Richelson, 1997). Inhibiting 5-HT

and NA degradation through monoamine oxidase (MAO) enzyme increases the synaptic

concentrations of monoamines (Brandon, 1982). However, with their proven efficacy,

these AD drugs present a delay of action that remains very long (Cipriani et al., 2018; 

Stassen, Angst, & Delini-Stula, 1997). The late onset of action of current AD drugs takes

several weeks to manifest. Given the complexity of the physiopathology of depression,

many mechanisms and factors could be responsible for monoaminergic transmission,

stress, inflammation, neurogenesis, and neuroplasticity (Dean & Keshavan, 2017).

Moreover, AD drugs are frequently associated with various adverse effects such as

fatigue, anxiety, sexual dysfunction, headache, and nausea. Often, these adverse effects

lead patients to discontinue their AD treatment and in some cases can worsen or even

cause increased suicide risk (Bull et al., 2002; Nischal, Tripathi, Nischal, & Trivedi, 2012; 

Sharma, Guski, Freund, & Gotzsche, 2016; Sicouri & Antzelevitch, 2008). This increased

risk could be attributed to either the drug itself, a delayed onset of action, a wrong

dosage, or a discontinuity in the treatment (Fergusson et al., 2005; Otte et al., 2016). To

date, the main goals of the new AD strategy in drug design and development are to

shorten the latency time for AD activity to manifest and substantially reduce adverse

effects (Ramaker & Dulawa, 2017). The most common AD drugs in use currently as a first-

line treatment are the selective serotonin reuptake inhibitors (SSRIs) and the serotonin–

norepinephrine reuptake inhibitors (SNRIs). Their safety is seriously questioned in a

series of studies (Cascade, Kalali, & Kennedy, 2009; Ferguson, 2001; 

Masand & Gupta, 2002; Montgomery, 2008; Read & Williams, 2018). As a result, the

biggest challenge currently is to prescribe efficient AD drugs but with an acceptable

tolerance in depressive patients. Newer AD classes have been discovered, such as

multimodal AD drugs (Richelson, 2013). In addition to SERT inhibition, these drugs also

antagonize 5HT  and 5HT  receptors and behave as partial agonists of 5HT  and full

agonists of 5HT  receptors (Katona & Katona, 2014). Recently, the fast-acting AD drug

ketamine has been identified and might represent a new generation of AD drugs able to

counteract depression with a fast onset of action (Caraci, Leggio, Salomone, & Drago, 2017

; Kavalali & Monteggia, 2015). However, despite the advanced level of clinical

development accomplished by ketamine, this drug licensed as an anesthetic and

painkiller has to be handled with extreme caution. A long list of serious adverse effects

caused by ketamine was reported in many studies as described in the review of Short et

al. (Short, Fong, Galvez, Shelker, & Loo, 2017). More recently, a study has identified ELK-1

transcription factor, which is an ERK downstream module as a potential target for

treating depression. ELK-1 is upregulated in depressive patients. In mice, selective

inhibition of ELK-1 phosphorylation using a 31-amino acid peptide, called TDE, produces

AD-like behavior in different tests (Apazoglou et al., 2018). To improve AD efficacy, or

suppress unwanted adverse effects, new strategies should be considered involving

endogenous molecules. This includes essentially peptides that are naturally synthesized

in the human body to exert specific actions. Indeed, peptides are involved in numerous

biological functions in the cell, mainly as signaling molecules and also as ligands for

several types of receptors. Considering their attractive pharmacological properties,

peptides constitute an excellent starting point for designing novel therapeutic molecules.

Their specificity results in excellent efficacy, safety, and tolerability in humans (

Fosgerau & Hoffmann, 2015).

Growing evidence places therapeutic peptides as a very promising market, and the

number of candidate peptides has shown an important increase in clinical trials (

Uhlig et al., 2014). To date, approximately 100 therapeutic peptides are marketed in the

United States, Europe, and Japan (Kaspar & Reichert, 2013). In a pharmaceutical industry

that lacks efficient innovations, peptides constitute a potential alternative in the

treatment of numerous diseases and disorders. Furthermore, new targets in depression

need to be discovered and validated for innovative molecules. The goals are to improve

AD therapy, eliminate adverse effects, and treat patients who are resistant to classical AD

drugs. Ion channels represent almost 20% of all the human protein targets (

Santos et al., 2017). Until 2015, 177 small molecules and biologic effectors of ion channels

had been approved as treatments for several pathologies (Santos et al., 2017). In the

present review, we discuss the spadin (or its analogs)–TREK-1 channel interaction that

leads to channel blocking, one of the most promising drug–target interactions in term of

CNS disorder treatments, mainly in the depression process.

2. TREK-1 in depression

2.1. TREK-1 channel

The TWIK-related K  channel-1 (TREK-1) is a member of the two-pore domain K  channel

family (K ) (Honore, 2007; Lesage & Lazdunski, 1998). As with other K  channels, TREK-

1 channels are responsible for maintaining the neuronal resting membrane potential and

controlling action potential duration and also participate in neurotransmitter release (

Honore, 2007). TREK-1, TREK-2, and TRAAK are part of lipid and mechanosensitive K

channel subfamily. TREK-1 and TREK-2 share >78% of homology (

Lesage & Lazdunski, 2000). In the cell, TREK-1 is regulated by a variety of physical and

chemical stimuli (Honore, 2007). Activation of TREK-1 channels can be mediated by

membrane stretch (Maingret, Patel, Lesage, Lazdunski, & Honore, 1999; Patel et al., 1998),

internal acidosis (Honore, Maingret, Lazdunski, & Patel, 2002; Maingret et al., 1999), heat

(Maingret et al., 2000), lipids (Kim, 2003; Patel & Honore, 2001), and polyunsaturated

fatty acids such as arachidonic acid (AA) (Patel et al., 1998). Pharmacological opening of

the channel is mediated by volatile general anesthetics (Patel et al., 1999) and analgesics

such as morphine through the activation of µ-opioid receptors (Devilliers et al., 2013).

TREK-1 is downregulated upon stimulation of Gs- and Gq-coupled receptors. In fact,

stimulation of 5-HT  receptors by 5-HT (Fink et al., 1996; Patel et al., 1998) or the

metabotropic glutamate receptors mGluR1 and mGluR5 by glutamate inhibits the TREK-1

channel (Chemin et al., 2003; Lopes et al., 2005). TREK-1 is also inhibited by SSRIs such as

fluoxetine (Heurteaux et al., 2006b; Kennard et al., 2005) and the endogenous peptide

spadin; this is described in detail in this review (Mazella et al., 2010).

2.2. Screening of TREK-1 modulators in vitro

Since its discovery, TREK-1 was shown to play a major role in several physiopathological

processes (Honore, 2007). Its widespread presence in a multitude of functions varying

from neurologic brain disorders to arrhythmia in the heart confirms the highly attractive

target that TREK-1 represents currently. Through the generation of TREK-1 knockout

(kcnk2 ) mice, it was clearly demonstrated that TREK-1 channels are involved in several

pathologies. TREK-1 activation is known to have neuroprotective properties against

ischemia or epilepsy (Blondeau et al., 2007; Heurteaux et al., 2004; Lauritzen et al., 2000

). More interestingly, kcnk2  mice demonstrated that TREK-1 channels are involved in

the depression process. Deletion of TREK-1 channels resulted in a depression-resistant

phenotype. This particular phenotype was identified by different animal assays for

depressive-like behaviors (such as FST, TST, CMST, NSF, or LHT), i.e., an increase in 5-HT

neurotransmission and a reduction in elevated corticosterone levels under stress (

Heurteaux, Lucas, et al., 2006b). Together, these data indicate that TREK-1 modulators are

of great pharmacological interest. With the aim to efficiently and easily screen TREK-1

modulators, a HEK293 cell line that stably expresses the human TREK-1 channel was

generated and named as the hTREK-1/HEK cell line (Moha ou Maati et al., 2011). Thus,

screening TREK-1 activators for characterizing new neuroprotective molecules could be

made easier using the hTREK-1/HEK cell line. The hTREK-1/HEK cell line was validated as

an efficient pharmacological tool for screening TREK-1 effectors because it responded to

various chemical and physical stimuli that modulate TREK-1 activity. In addition, TREK-1

was associated with pain perception (Alloui et al., 2006). Consequently, activators of

TREK-1 channels displaying in vivo analgesic activity were also screened using the

hTREK-1/HEK cell line (Vivier et al., 2017). Another stable TREK-1 transfected HEK cell

line was used to study the role of TREK-1 channels in maintaining uterine quiescence

during pregnancy (Heyman et al., 2013). Recently, a CHO cell line stably expressing

hTREK-1, named as CHO/hTREK-1 cells, was generated to study the effect of

overexpression of TREK-1 on cell proliferation (Zhang, Yin, Wang, Li, & Wang, 2016). The

design of the hTREK-1/HEK cell line was also of great importance for research and

screening of new and specific TREK-1 inhibitors with AD properties (Borsotto et al., 2015;

Djillani et al., 2017; Moha Ou Maati et al., 2012; Veyssiere et al., 2015).

2.3. Small molecule inhibitors of TREK-1

2.3.1. Selective serotonin reuptake inhibitors

The monoaminergic hypothesis of depression has driven a number of research

laboratories to search for new molecules that block 5-HT reuptake. Fluoxetine was

approved as an AD in 1986, and clinical trials showed a clear improvement in adverse

effects previously observed with tricyclics (

Perez-Caballero, Torres-Sanchez, Bravo, Mico, & Berrocoso, 2014). The AD activity was

attributed to the high-affinity blockade of SERT, thereby leading to an increase in the

amount of 5-HT in the synapses (Wong, Horng, Bymaster, Hauser, & Molloy, 1974).

At clinical concentrations, TREK-1 channels were significantly blocked by fluoxetine and

its active metabolite norfluoxetine in a concentration-dependent manner, and the IC s

were 19 µM and 9 µM, respectively (Heurteaux, Lucas, et al., 2006b; Kennard et al., 2005)

(Table 1). TREK-1 inhibition seems to be state dependent because norfluoxetine binds to

the fenestration in TREK-1 that is only available in the down state (when the lower

sections of M2, M3, and M4 transmembrane domains project into the cytoplasm)

corresponding to the channel lower activity (Dong et al., 2015). However, when TREK-1 is

activated by stretch or AA, the channel conformation changes to the up state (when

lower sections of M2, M3, and M4 transmembrane domains project into the membrane),

which suppresses the fenestration and does not allow norfluoxetine to bind (

Dong et al., 2015; Kennard et al., 2005). In a recent study, other SSRIs have been shown to

be potent blockers of TREK-1 and TREK-2 channels in HEK-293 cells and HT-22 neuronal

cells. In addition to fluoxetine, TREK-1 inhibition was also observed with paroxetine and

citalopram, two other commonly prescribed AD drugs (Kim, Lee, Hong, Han, & Kang, 2017

) (Table 1).

Table 1. Molecules described as TREK-1 blockers.

2.3.2. Other inhibitors of TREK-1 channels

Few molecules were identified in the literature as potent TREK-1 channel blockers (

Table 1). SID1900, a small molecule screened from a large library of 487 compounds, has

been shown to block TREK-1 channels in a manner similar to that of spadin and to induce

an AD-like behavior in a rat model of chronic unpredictable mild stress (Ye et al., 2015).

SID1900 inhibits TREK-1 with an IC  of 29.72 µM, which largely exceeds that obtained

with spadin (peptide #1 Table 2) (IC  = 40 nM) (Djillani et al., 2017). Furthermore,

antipsychotic drugs have been shown to be modulators of TREK-1 channels (

Thummler, Duprat, & Lazdunski, 2007). Typical and atypical antipsychotics such as

fluphenazine, chlorpromazine, haloperidol, loxapine, and clozapine inhibit TREK-1 and

TREK-2 channels in a dose-dependent manner without affecting TRAAK channels (

Kim et al., 2017; Thummler et al., 2007) (Table 1). In contrast to antipsychotic drugs,

mood stabilizers such as lithium chloride, valproate, gabapentin, and carbamazepine

activate TREK-1 channels but have no effect on TREK-2 channels (Kim et al., 2017).

Dihydropyridine Ca  channel antagonists such as amlodipine and niguldipine are

nonspecific blockers of TREK-1 channels (Table 1). They inhibit TREK-1 channels with an

IC  of 0.43 and 0.75 µM, respectively (Liu, Enyeart, & Enyeart, 2007). In vitro, they

potently block calcium-induced vascular smooth muscle contractions with IC  of 1.9 and

4.1 nM for amlodipine and nifedipine, respectively (Burges et al., 1987). In addition, L-

methionine was reported to decrease the probability of TREK-1 opening in a cell-

attached patch-clamp configuration (Baker et al., 2008; Lei et al., 2014) (Table 1). This

amino acid was used as a tool to investigate the role of TREK-1 in uterine contraction (

Yin et al., 2018) and in controlling bladder smooth muscle cell excitability following

contraction (Baker et al., 2008). However, L-methionine inhibition on TREK-1 has been

shown to have contrast in another study where no TREK-1 inhibitory effect was observed

in rat colon smooth muscle cells after activation with AA (Gil et al., 2012). The

neuroprotective compound 3-n-Butylphthalide (NBP) and its racemic form dl-NBP were

reported to block TREK-1 (Ji, Zhao, Cao, Shi, & Wang, 2011). Recently, another NBP analog,

named as lig4-4, was described as a specific blocker of TREK-1 (Wang et al., 2018). The

authors presumed that the neuroprotective effects of lig4-4 observed in ischemic stroke

might be related to TREK-1 inhibition (Wang et al., 2018). This hypothesis shows total

contradiction to data published >10 years ago that showed that the opening of TREK-1 is

neuroprotective (Heurteaux, Laigle, Blondeau, Jarretou, & Lazdunski, 2006a). However,

neither NBP nor lig4-4 can be considered as specific blockers for TREK-1 because lig4-4

also inhibits hERG, K 1.5, K 2.1, K 3.1, and neuronal Na  and Ca  channels (

Wang et al., 2018).

Table 2. Summary of effects of spadin analogs on TREK-1 inhibition and FST immobility

time.

PE 12-28

(Spadin)

No modification 87.08 ± 7.32 *** 107.40 ± 5.05 ***

Ac-PE 12-

28

N-acetylation 83.46 ± 8.33 *** nd nd

Ac-RI-PE

12-28

retro-inverso of

spadin

94.43 ± 10.87 *** 135.10 ± 8.11 **

Ac-PE-22-

28

N-acetylation 19.29 ± 25.7 ns nd nd

Ac-PE-21-

28

N-acetylation 26.89 ± 14.9 ns nd nd

Ac-RI-PE-

21-28

N-acetylation +

retro-inverso

31.19 ± 17.8 ns nd nd

Ac-PE 1-28 N-acetylation 10.43 ± 28.5 ns nd nd

Ac-RI-PE

1-28

N-acetylation +

retro-inverso

108.59 ± 10 *** 83.60 ± 9.01 ***

Ac-PE 6-28 N-acetylation 71.85 ± 28.12 ** nd nd

Ac-RI-PE

6-28

N-acetylation +

retro-inverso

56.47 ± 24.13 * nd nd

Ac-PE 1-44 N-acetylation 26.97 ± 6.25 ns nd nd

Ac-RI-PE

1-44

N-acetylation +

retro-inverso

37.73 ± 8.77 ns nd nd

G/A-PE 12-

28

aa substitution 83.5 ± 9.76 *** 120.4 ± 9.7 **

RI-G/A-PE

12-28

retro-inverso +aa

substitution

72.15 ± 11.75 *** 127.7 ± 8.32 **

c(RI-PE 12-

28)

cyclization 67.24 ± 3.41 *** 157 ± 8.09 ns

c(RI-PE 12-

28)

cyclization 91.25 ± 8.14 *** 146.7 ± 12.99 ns

PE 12-27 No modification 28.39 ± 9.916 ** 100.2 ± 5.0 ***

PE 14-25 No modification 0 ns 112.2 ± 7.1 **

PE 22-27 No modification 25.7 ± 20.01 ns 168.2 ± 4.2 ns

PE 22-25 No modification 36.02 ± 17.47 * 100.2 ± 5.0 ***

PE 22-28 No modification 55.46 ± 4.555 *** 91.8 ± 6.1 ***

Biotin-PE

22-28

N-biotinylation 53.03 ± 6.416 *** 112.1 ± 4.3 ***

Dansyl-PE

22-28

N-dansylation 48.78 ± 14.52 ** 104.6 ± 11.8 ***

PE 22-28-

O-Methyl

C-methoxylation 42.98 ± 13.47 ** 137.1 ± 8.1 *

PE 22-28-

O-Ethyl

C-ethoxylation 41.39 ± 11.52 ** 113.2 ± 8.5 ***

Formyl-PE

22-28

N-formylation 32.45 ± 12.22 * nd nd

G/A-PE 22-

28

aa substitution 50.61 ± 7.935 *** 110.2 ± 3.6 ***

Biotin-

G/A-PE 22-

28

aa

substitution + N-

biotinylation

46.11 ± 7.743 *** 140.7 ± 7.1 *

PI-PE 22-

28

No modification 46.19 ± 7.565 *** 119.7 ± 11.8 **

Biotin-PI-

PE 22-28

N-biotinylation 49.11 ± 7.454 *** 124.1 ± 11.7 **

Palmitoyl-

PE 22-28

N-palmitoylation 26.69 ± 16.45 ns nd nd

FITC-PE

22-28

N-FITC group 22.1 ± 12.63 ns nd nd

Acetyl-PE

22-28

N-acetylation 20.49 ± 8.777 * nd nd

Myristoyl-

PE 22-28

N-myristoylation 18.04 ± 17.77 ns nd nd

LC biotin-

PE 22-28

N-long chain

biotinylation

15.86 ± 11.21 ns nd nd

5’FAM-PE

22-28

N-5’FAM group 6.633 ± 7.065 ns nd nd

FMoc-PE

22-28

N-Fmoc group 5.826 ± 10.91 ns nd nd

Stearic

acid-PE

22-28

N-stearic acid

group

5.412 ± 5.496 ns nd nd

2.4. Birth of an idea…

Approximately 10 years ago, TREK-1 was described as a new target in depression (

Heurteaux, Lucas, et al., 2006b). This K  mechanosensitive channel is mainly expressed

in the prefrontal cortex and the hippocampus (Heurteaux, Lucas, et al., 2006b; 

Medhurst et al., 2001). These regions are known to mediate cognitive aspects of

depression, such as memory impairment, feeling of worthlessness, guilt, and suicidality (

Nestler et al., 2002; Otte et al., 2016). TREK-1 is also expressed in the amygdala,

hypothalamus, and in the striatum, particularly in the nucleus accumbens to mediate

memory of emotional events. Finally, TREK-1 is abundant in GABA (γ-aminobutyric acid)-

containing neurons of the caudate nucleus and putamen (Hervieu et al., 2001) and in

hippocampal glutamatergic neurons (Medhurst et al., 2001). Investigation of the role of

TREK-1 channel in the physiopathology of depression by using the knockout of Kcnk2

(the gene coding for TREK-1 channel) in mice demonstrated a depression-resistant

phenotype (Heurteaux, Lucas, et al., 2006b) in five assays for depression-like behaviors (

Cryan & Holmes, 2005): Tail Suspension Test (TST), Forced Swim Test (FST), Conditioned

Suppression of Motility Test (CSMT), Learned Helplessness Test (LHT), and Novelty-

Suppressed Feeding Test (NSF). In TREK-1-deficient mice, neurogenesis induced by the

well-known SSRI fluoxetine was significantly increased compared to the wild-type mice (

Heurteaux, Lucas, et al., 2006b). However, the proliferation of newborn cells manifested

only after 21 days of treatment.

On the other hand, deletion of the Kcnk2 gene enhanced the firing of 5-HT neurons in the

dorsal raphe nucleus (Heurteaux, Lucas, et al., 2006b). Knowing the importance of 5-HT

in the neurobiology of depression “Monoaminergic Theory of Depression” (

Duman, Heninger, & Nestler, 1997) and because TREK-1 is inhibited by SSRIs such as

fluoxetine, this K  channel has been considered as a serious candidate to play a key role

in the physiopathology of depression (Heurteaux, Lucas, et al., 2006b).

In humans, Star*D study has identified an association between the existence of four

genetic variants (single nucleotide polymorphisms [SNPs]) in the TREK-1 locus and

resistance to multiple AD classes (Perlis et al., 2008). Another study showed that an SNP

at the 3′-untranslated region on exon 7 of the kcnk2 gene could be associated with both

depression incidence and poor treatment efficacy (Liou et al., 2009). Although no brain

imaging studies in depressive patients have been published yet, a study suggested that

some TREK-1 genotypes in humans can be associated with a depression-resistant

phenotype (Dillon et al., 2010). Taken together, these studies in humans strengthen the

idea that TREK-1 represents a crucial target in the field of depression and the search for

selective blockers of TREK-1 might potentially lead to a new generation of AD drugs.

2.5. SORTing TREK-1...

Within the neuron, the TREK-1 channel forms a complex made of the A-kinase-anchoring

protein AKAP150 (Sandoz et al., 2006) and the microtubule-associated protein Mtap2 (

Sandoz et al., 2008). Both proteins regulate the sorting of TREK-1 to the plasma

membrane. However, these partner proteins are not unique. In 2010, another crucial

interacting protein, named as sortilin, was discovered. Sortilin regulates, transports, and

targets the TREK-1 channel to the plasma membrane where it exerts its role as a

background potassium channel (Mazella et al., 2010). Two decades ago, sortilin, a 95 kDa

protein, was identified as a sorting molecule in the human brain (Petersen et al., 1997). It

was also described shortly later in another study as the neurotensin receptor-3 (NTSR-3)

(Mazella et al., 1998). Sortilin/NTSR-3 binds a number of ligands such as neurotensin

(NT), precursor of the nerve growth factor (proNGF) (Nykjaer et al., 2004), lipoprotein

lipase (Nielsen, Jacobsen, Olivecrona, Gliemann, & Petersen, 1999), and propeptide (PE) (

Munck Petersen et al., 1999). In the Golgi network, the post-translational cleavage of

prosortilin (precursor of sortilin) by the protein convertase furin results in mature

sortilin and the release of a 44-amino acid peptide named as PE (Fig. 1) (

Munck Petersen et al., 1999).
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Fluoxetine HEK

293

19 µM Blocks TREK-2

(IC  = 28.7 ± 7.6 µM),

SERT and TASK-3

FST (acute and

chronic – 14-

21 days)
37.9 ± 7.7 µM

No effect after

3 day

subchronic

treatment

Norfluoxetine HEK

293

9 µM Blocks TREK-2

(IC  = 4.9 ± 0.5 µM)

nd

Paroxetine COS-7 20 µM tested Blocks TREK-2 (at

20 µM tested), SERT,

GIRK and Kv3.1

FST (acute)

Citalopram HEK

293

100 µM tested Blocks TREK-2 (at

100 µM tested),

SERT, Kv1.5

(IC  = 2.8 ± 1.1 µM)

and L-type Ca

channels

(IC  = 60.3 ± 8.5 µM)

nd

Spadin (PE 12–

28)

Cos-7,

HEK293

40 nM Specific to TREK-1 FST (acute and

subchronic),

TST, LHT, and

NSF

(subchronic)

No effect on TREK-2,

TRAAK, TRESK,

TASK-1, and hERG

channels

PE 22–28 HEK

293

0.12 nM

G/A-PE 22–28 HEK

293

0.10 nM

Biotin-G/A-PE

22–28

HEK

293

1.2 nM

Fluphenazine Cos-7 4.7 µM Block TREK-2 (at

10 µM tested), no

effect on TRAAK at

10 µM

nd

Chlorpromazine Cos-7 2.7 µM

Haloperidol Cos-7 5.5 µM

Flupenthixol Cos-7 2.0 µM

Loxapine Cos-7 19.7 µM

Pimozide Cos-7 1.8 µM

Clozapine Cos-7 10 µM tested

Amlodipine AZF

cells

0.43 µM Block L-type Ca

channels

nd

(adrenal

gland)

Niguldipine AZF

cells

0.75 µM nd

(adrenal

gland)

SID1900 HEK

293

29.72 µM nd Rat model of

CUMS, 14 day

and 21 day FST,

Sucrose

preference (14

d and 28 d)

L-methionine Bladder

smooth

muscle

cells

1 mM

(controversial)

nd nd

l-NBP, d-NBP,

ld-NBP

CHO 0.06 ± 0.03 µM nd nd

lig4–4 CHO 2.06 µM Blocks K 2.1, K 1.5,

K 3.1, hERG and

neuronal Na  and

Ca  channels

(IC  = 30 µM)

nd
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Fig. 1. Spadin analog sequences. Peptide sequences designed from the parent molecule

spadin using the RI strategy, peptide cyclization and shortening sequence. The peptidic

sequences are shown as three-letter nomenclature and numbered according to the

sequence of PE (1–44). Amino-acids in L-configuration are shown in grey circles while

amino-acids in D-configuration (inverso aa) are represented as red circles. Replacement

of glycine residue by an alanine is shown by blue circles.

Sortilin/NTSR-3 co-localizes with TREK-1 in numerous brain areas involved in mood, such

as the prefrontal cortex, hippocampus, striatum, amygdala, and hypothalamus (

Mazella et al., 2010). In addition, physical interaction between TREK-1 and sortilin/NTSR-

3 was characterized by pull down experiments. It has been showed that TREK-1

expression at the plasma membrane is greatly enhanced in the presence of sortilin/NTSR-

3 (Mazella et al., 2010). Although present in low amounts at the plasma membrane in the

absence of sortilin, TREK-1 channels can be modulated by the different effectors

described above.

Furthermore, an interesting observation from our team showed that sortilin/NTSR-3-

deficient mice represent a depression-resistant phenotype similar to the behavior of

kcnk2  mice (Moreno et al., 2018). Arguments cited above support the involvement of

both TREK-1 and sortilin/NTSR-3 in the physiopathology of depression.

3. Discovery of SPADIN

3.1. Sortilin-derived peptide with antidepressant properties

PE is a 44-amino acid peptide that binds with high affinity (Kd ~20–30 nM) to the mature

sortilin/NTSR-3 (Munck Petersen et al., 1999). The peptide sequence required for the

binding of PE to sortilin/NTSR-3 was identified as Gln -Arg  (Fig. 1). Moreover, the PE

fragment corresponding to Gln -Arg  had lower affinity in binding the mature sortilin (

Westergaard et al., 2004). In this study, a 17-amino acid-containing peptide was designed

and named as spadin, acronym generated from Sortilin-derived Peptide with

Antidepressant properties. Spadin contains the main fragment of PE, Trp -Arg , capable

of binding to sortilin/NTSR-3 and stabilized by the sequence Ala -Pro -Leu -Pro -

Arg  added upstream to finally generate a 17-amino acid peptide corresponding to the

sequence Ala -Arg  or PE 12-28 (Fig. 1, Table 2, peptide #1) (Mazella et al., 2010).

PE has been shown to antagonize the effects of NT on cell migration of the human

microglia cell line C13NJ that expresses the NTSR-3 subtype, exclusively (

Martin, Vincent, & Mazella, 2003). Similarly to PE, spadin (PE 12-28) is able to bind with

an identical affinity (Kd = 8 nM) to sortilin/NTSR-3 (Mazella et al., 2010). The similarity

between PE and spadin to bind to sortilin/NTSR-3 is extended to their functional

properties. For example, spadin totally blocks cell migration by displacing NT from the

binding site of sortilin/NTSR3 (Mazella et al., 2010).

Given the role of TREK-1 channels in depression (Heurteaux, Lucas, et al., 2006b), the

question that arose was to determine whether PE or spadin could regulate TREK-1

channels and consequently generate a depression-resistant phenotype in mice. To

answer this question, spadin was tested on TREK-1-expressing COS-7 cells in

electrophysiological experiments. In the patch-clamp technique using whole-cell

configuration, TREK-1 was first activated by 10 µM of AA, and then, when spadin was

applied extracellularly, TREK-1 was potently blocked by spadin with an IC  of 70.7 nM (

Table 1, Table 2) (Mazella et al., 2010). TREK-1 blockade was confirmed on other type of

cell lines such as the hTREK-1/HEK (IC  = 40 nM) or the pancreatic β-TC3 cells (

Djillani et al., 2017; Mazella et al., 2010). The direct blocking of TREK-1 channel activity

was demonstrated on the h-TREK-1/HEK cell line by using excised patches in an inside-

out configuration (Gil et al., 2012). On brain slices, endogenous TREK-1 currents recorded

in the hippocampal CA3 pyramidal cells were also activated by AA and strongly blocked

by spadin (Mazella et al., 2010). More interestingly, on hippocampal brain slices, the

spadin effect totally disappeared in TREK-1-deficient mice, which confirms TREK-1 as a

target for spadin (Mazella et al., 2010).

TREK-1 is known to be highly expressed in the dorsal raphe nucleus (DRN) (

Medhurst et al., 2001) and kcnk2  mice showed an enhanced serotonergic

neurotransmission (Heurteaux, Lucas, et al., 2006b). To address the question whether

pharmacological blockade of TREK-1 by spadin affects 5-HT neurotransmission, mice

were given a 10 µM dose of spadin as an i.p injection and the unitary extracellular

activity of serotonergic neurons was recorded in anesthetized animals. Data showed that

spadin potentiates 5-HT neurotransmission firing in vivo (Mazella et al., 2010), similar to

the activity of the 5-HT neurons in kcnk2  mice (Heurteaux, Lucas, et al., 2006b). To

investigate further, we addressed the question whether blocking TREK-1 and increasing

5-HT firing in the DRN by spadin could have an impact on mouse behavior. Spadin was

administered to mice in acute and subchronic treatments and AD activity was assessed

using several mouse models of depression. Spadin displays AD properties in mice in

depression-like behavior tests (FST, TST, CSMT, LHT, and NSF). Moreover, spadin

treatments generate two canonical effects of AD drugs: the increase in 5-HT

neurotransmission and the induction of neurogenesis (Mazella et al., 2010). These results

confirmed the previous data obtained with Kcnk2  mice, whose main phenotype is

resistance to depression (Heurteaux, Lucas, et al., 2006b). In addition, subchronic

treatment with spadin results in increasing CREB activation and hippocampal

neurogenesis. This effect is outstanding, as it occurs only after a 4 day treatment in

contrast to SSRIs that need 3–4 weeks of treatment to increase hippocampal

neurogenesis (Mazella et al., 2010).

Moreover, in vitro (in cortical neurons) and in vivo (in the hippocampus), studies showed

that spadin increases both mRNA and protein expression of markers of synaptogenesis,

such as the post-synaptic density protein-95 (PSD-95) or synapsin (Devader et al., 2015).

These data indicated that spadin increases the number of functional neurons. This

observation was supported by the fact that spadin treatment significantly increases the

number of mature spines on axons (Devader et al., 2015).

Taken together, these data confirmed that the newly generated neurons by spadin are

indeed functional and able to interact within the neuronal complex network.

3.2. Spadin is a specific and safe blocker of TREK-1

Despite the high homology in structure, function, and regulation between TREK-1, TREK-

2, and TRAAK channels (Lesage & Lazdunski, 2000), spadin specifically blocks TREK-1, as

no effect is observed on the other stretch-activated K  channels such as TREK-2 and

TRAAK. TASK-1 and TRESK, two other members of the K  channel family, are also

insensitive to spadin (Table 1) (Moha Ou Maati et al., 2012). As TASK-1 is involved in

inflammation (Bittner et al., 2009) and apoptosis (Lauritzen et al., 2003; 

Leithner et al., 2016) and TRESK in migraine (Lafreniere & Rouleau, 2011) and pain (

Marsh, Acosta, Djouhri, & Lawson, 2012; Tulleuda et al., 2011), the absence of spadin

effect on these channels might be beneficial.

TREK-1 was also shown to play an important role in pain perception (Alloui et al., 2006).

Kcnk2  mice are more sensitive to thermal pain (Alloui et al., 2006). Here again, spadin

is unable to modify pain perception in tail flick and hot plate tests (

Moha Ou Maati et al., 2012).

Undoubtedly, TREK-1 plays a crucial role in the regulation of neuronal excitability (

Heurteaux et al., 2004). TREK-1-mediated neuroprotection against epilepsy and

cerebrovascular diseases is not affected by spadin treatment. Spadin does not increase

pentylenetetrazol (PTZ) or kainate-induced seizures (Moha Ou Maati et al., 2012).

Furthermore, a 3-week spadin treatment does not increase the infarct size after focal

ischemia (Moha Ou Maati et al., 2012).

Finally, at the cardiovascular level, long-term treatment by spadin has no effect on

systolic blood pressure and heart pulses (Moha Ou Maati et al., 2012).

One of the major challenges in the development of safe drugs is the early detection of

prolongation of the QT interval, which causes Torsades de pointes (TdP). Long QT-

inducing drugs block two types of potassium currents: the rapid (I ) and the slow (I )

potassium currents (Cheng & Kodama, 2004; Sanguinetti & Jurkiewicz, 1990). I  current

is carried by the hERG channel. However, I  activity requires the association of KCNQ1

with KCNE1 (Barhanin et al., 1996; Sanguinetti et al., 1996). As I  and I  are essential

components for normal cardiac function, drug-acquired QT interval prolongation due to

hERG inhibition causes an increase in sudden death (Brown, 2004). Consequently, several

cardiovascular and non-cardiovascular drugs have been withdrawn from the market (

Finlayson, Witchel, McCulloch, & Sharkey, 2004). Presently, all drug candidates should be

tested in vitro to check whether or not they inhibit hERG channels (

Chen, Sampson, & Kass, 2016). With the aim to develop spadin as an approved drug in the

treatment of depression, this peptide was tested for a possible hERG channel inhibition.

Spadin does not affect hERG channel biophysical properties, as the use of 10 µM or higher

concentrations of spadin do not show any modifications of I  or I  (Djillani et al., 2017; 

Moha Ou Maati et al., 2012). Taken together, these observations confirm spadin as a safe

molecule for further use in clinic. The potent AD properties of spadin have given rise to

the patent published under the no. US8252748B2 (

Mazella, Petrault, Borsotto, Heurteaux, & Widmann, 2012).

3.3. Increasing spadin efficacy and in vivo bioavailability

In FST, spadin AD activity lasts for 7 h after a single i.p injection (Veyssiere et al., 2015). To

improve in vivo stability of spadin and prolong AD activity beyond 7 h after an acute

treatment, different strategies have been thoroughly considered, such as the retro-

inverso (RI) strategy, peptide cyclization, amino acid replacement, protection of C– and

N-terminal ends of the peptides, and finally shortening of the spadin sequence. The RI

strategy consists of changing the amino acid configuration from L to D. At the same time,

the amino acid sequences are inverted. RI technology was shown in many studies to

increase the resistance of peptides to proteolysis and thus improve their bioavailability in

the blood (Chorev & Goodman, 1995; 

Chorev, Shavitz, Goodman, Minick, & Guillemin, 1979). Eleven spadin analogs including

RI spadin analogs were synthesized and screened on the hTREK-1/HEK cell line by the

patch-clamp technique (Table 2, peptides #2 to #12) Two RI analogs were identified:

analog 3 (Ac-RI-PE 12-28, peptide # 3) and 8 (Ac-RI-PE 1-28, peptide # 8) (Fig. 1, Table 2).

They display a better inhibition potency for TREK-1 channel activity, IC  were

11.5 ± 0.59 nM and 9.95 ± 0.85 nM for analog 3 and analog 8, respectively, compared to

56.39 ± 0.01 nM for spadin (Veyssiere et al., 2015).

The analogs 3 and 8 share the same AD properties with spadin after acute or subchronic

treatments. Similar to spadin, analogs 3 and 8 significantly reduce the immobility time in

the FST (Veyssiere et al., 2015). Moreover, in the NSF, the two RI analogs shorten the

latency time for eating in mice. More interestingly, these analogs induce hippocampal

neurogenesis.

One of the challenges in terms of development is to improve the in vivo stability of

spadin. RI analogs prolong the AD activity by three times compared to spadin (

Veyssiere et al., 2015). Specifically, analog 3 does not produce any adverse effects on pain,

epilepsy, or arrhythmia. RI analogs including analog 3 and analog 8 were patented for the

treatment of depression under the number WO2015110915A2 (Gaudriault et al., 2015).

Other analogs were designed by the RI strategy, such as analog 13 (G/A-PE 12-28, Table 2

peptide #13), analog 14 (RI-G/A-PE 12-28, Table 2 peptide #14), analog 15 (c(RI-PE 12-

28), Table 2 peptide #15), and analog 16 (a tandem of c(RI-PE 12-28), Table 2 peptide

#16). The peptide sequences are depicted in Fig. 1.

Analog 13 contains the same sequence as spadin, but the three glycine residues were

replaced by three alanine residues. Analog 14 is the RI of analog 13. Both analogs 13 and

14 are able to strongly inhibit TREK-1 channels (83.50% ± 9.76%, n = 8, p = 0.94),

(72.15% ± 11.75%, n = 9, p = 0.36), respectively, compared to spadin (87.08% ± 7.32%, n = 8) (

Fig. 2 a, b). More interestingly, both analogs conserve their AD activity in FST when

injected intravenously (i.v.). The immobility time is significantly decreased (120.4 ± 9.7 s,

n = 10, p = 0.0049 and 127.7 ± 8.32 s, n = 10, p = 0.0105, respectively) for analogs 13 and 14

compared to saline (160.6 ± 7.97 s, n = 10) (Fig. 3a).
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Fig. 2. Spadin analogs display strong TREK-1 inhibition. Spadin analogs named analog

13, analog 14, analog 15 and analog 16 were screened on the hTREK-1/HEK cell line for

their ability to block TREK-1 channels. a. Following activation by 10 µM AA, TREK-1

inhibition by 100 nM spadin analogs was measured at 0 mV using the whole-cell

configuration of the patch-clamp technique in voltage-clamp mode. b. I/V curves

obtained with spadin analogs and generated by a ramp protocol from −100 mV to +60 mV

with a holding potential at −80 mV. *, p < 0.01, ***, p < 0.001.
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Fig. 3. Antidepressant activity of spadin analogs in the Forced Swim Test. a. In the FST,

when administered intravenously, analog 13 and analog 14 significantly decreased the

immobility time in mice compared to saline injected mice (control). However, analog 15

and analog 16 were unable to display AD-like behavior when i.v injected. b.

Intracerebroventricular route (i.c.v) demonstrated that analog 15 did not cross the BBB

while analog 16 remains inefficient in reducing the immobility time in mice. *, p < 0.05;

**, p < 0.01; ns, not significant.

Methods. 30 min before the test, animals were injected with the different spadin's

analogs by using either the intraveinous route (iv) or the intracerebroventricular route

(icv). Mice were individually placed for 6 min in a non-escapable cylinder (30 cm height

and 15 cm diameter) half-filled with water at 22 °C ± 1 °C. The immobility time was

manually measured only during the last 4 min. A mouse was considered immobile when

it remained immobile with only slight movements in order to keep its head above water (

Porsolt, Le Pichon, & Jalfre, 1977). Statistical comparisons were performed using ANOVA

one-way.

Peptide cyclization is one of the common strategies used to increase peptide stability and

efficacy (Adessi & Soto, 2002). It has been shown that cyclization could increase peptide

resistance against proteolytic degradation that subsequently enhances the peptide

bioavailability (Wang et al., 2014). Therefore, the strategy consisted of cyclizing analog 3

alone (analog 15, Table 2 peptide #15) or in tandem (analog 16, Table 2 peptide #16)

sequence (Fig. 1) to study the impact of the cyclization on peptides crossing the blood–

brain barrier (BBB). Using the whole-cell configuration of the patch-clamp technique,

both analogs 15 and 16 inhibit TREK-1 current with different potencies (67.24% ± 3.41%,

n = 9, p = 0.046 and 91.25% ± 8.14%, n = 10, p = 0.67), respectively (Fig. 2). However, in the

FST, when both analogs are administered through the i.v. route, neither analog 15 nor

analog 16 is able to produce a significant decrease in immobility time (157 ± 8.09 s, n = 10,

p = 0.755 and 146.7 ± 12.99 s, n = 10, p = 0.374, respectively) compared to saline

(160.6 ± 7.97 s, n = 10) (Fig. 3a). It appears that the lack of activity of analog 15 is due to its

inability to cross the BBB, as it displays AD activity only when injected directly in the

brain by an intracerebroventricular route (i.c.v.) (Fig. 3b).

3.4. Shortened spadin analogs with antidepressant activity

Spadin blood degradation products revealed by high-pressure liquid chromatography

(HPLC) consist of at least two short peptides PE 12–27 (Table 2, peptide #17) and PE 14–

25 (Table 2, peptide #18) (Djillani et al., 2017). On the basis of this analysis, several short

analogs were designed and screened on the hTREK-1/HEK cell line. PE 22–28 (Table 2,

peptide #21) is the shortest, most efficient sequence capable of blocking the TREK-1

channel with higher potency (IC  = 0.12 nM versus IC  = 40 nM for spadin (PE 12–28)) (

Fig. 1). Then, PE 22–28 (peptide #21) was used as the core peptide to design other

analogs with different N- and C-terminal end modifications. These PE 22–28 analogs

abolish or maintain TREK-1 inhibition on the basis of the nature of the chemical group

attached to C or N-terminus (Table 2) (Djillani et al., 2017).

With PE 22–28, two other analogs were retained for further studies, as they inhibit the

TREK-1 channel with a higher potency. They correspond to the PE 22–28, where Gly  is

replaced by an Ala  (G/A-PE 22–28, Table 2 peptide #27) and its biotinylated derivative

(biotin-G/A-PE 22–28, Table 2 peptide #28) (Fig. 1). Their TREK-1-inhibiting potencies are

IC  = 0.10 nM and IC  = 1.2 nM for G/A-PE 22–28 and biotin-G/A-PE 22–28, respectively (

Djillani et al., 2017). This represents, respectively, a 400- and 33-fold increase in TREK-1

inhibition potency in comparison to spadin.

Current blockade is specific to TREK-1, as TREK-2, TRAAK, TRESK, and TASK-1 channels

are not inhibited by these shortened peptides. How about their ability to counteract

depression behavior? Does shortening spadin sequence and replacing Gly  by Ala  have

any consequences on mice behavior? To answer these questions, a series of behavioral

studies on mice treated with short spadin analogs were performed (Djillani et al., 2017).

These candidate peptides display AD properties after acute and 4 day subchronic

treatments in FST, NSF, and LHT. More interestingly, similar to spadin, they produce an

AD-like behavior regardless of the route of administration. They efficiently reduce the

immobility time in the FST after i.p, i.v., and gavage administration (Djillani et al., 2017).

Similar to spadin, hippocampal neurogenesis is increased as revealed by BrdU (5-Bromo-

2′-Deoxyuridine) labeling with a prominent effect of G/A-PE 22–28 (Table 2, peptide

#27). At the same time, neurogenesis induced by spadin short analogs is consistent with

the increase in PSD-95 expression, a marker of synaptogenesis (Djillani et al., 2017).

One of the most important effects observed with short spadin analogs is the

improvement in terms of in vivo stability compared to spadin. Indeed, G/A-PE 22–28

(21h) and biotin-G/A-PE 22–28 (23h) prolong significantly the action duration of spadin

(only 7 h) as revealed by FST (Djillani et al., 2017). This is extremely promising and

interesting, as the ultimate goal in the near future is to test them in clinical trials and

eventually commercialize these long-lasting peptides as ADs of a new generation (Fig. 4).
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Fig. 4. Schematic representation of spadin development as new concept in AD drug

discovery. Since the validation of TREK-1 channel as a novel target for AD drugs, spadin

was discovered to be a specific blocker of TREK-1 with high affinity. Different

optimization processes were conducted in order to improve the affinity, efficacy and in

vivo stability while maintaining the AD properties. The strategies used led to the

identification as AD drug promising candidates: G/A-PE 22–28, biotin-G/A-PE 22–28 in

addition to spadin. The final goal is to complete preclinical development before

launching clinical trials in human and finally develop spadin and/or its analogs as AD

drugs. The number in circle corresponds to the analog number indicated in Table 2.

However, for the clinical development of any molecule, whether a small drug or a

therapeutic peptide, it should be screened to detect any change in the QT interval. PE 22–

28 and analogs do not modify hERG channel activity, which render them more specific

and safer for a possible further pharmaceutical development (Djillani et al., 2017).

3.5. Spadin and analogs as biomarkers of major depressive disorder

To clinically predict patients with major depressive disorder (MDD) who respond to

classical AD treatment and routinely monitor AD activity, there is a pressing need to

validate biomarkers for MDD. This will allow an inexpensive diagnosis and predictive test

for an MDD response to facilitate patient follow-up (Woods, Iosifescu, & Darie, 2014).

Thus far, there has been no validated biomarker for MDD, and clinical diagnosis is only

symptomatic. Recently, various candidates as biomarkers for MDD were described in the

literature, such as inflammatory mediators, growth factors, neurotransmitters,

neurotrophic factors, and metabolic biomarkers (Gururajan, Clarke, Dinan, & Cryan, 2016;

Strawbridge, Young, & Cleare, 2017). Many preclinical studies have pointed out the crucial

role of BDNF in the physiopathology of MDD, as BDNF serum levels are lower in patients

with MDD than in healthy volunteers or MDD-medicated patients (Aydemir et al., 2006; 

Aydemir, Deveci, Taskin, Taneli, & Esen-Danaci, 2007; Gervasoni et al., 2005; 

Gonul et al., 2005; Huang, Lee, & Liu, 2008; Karege et al., 2005; 

Monteleone, Serritella, Martiadis, & Maj, 2008; Piccinni et al., 2008; Shimizu et al., 2003; 

Yoshimura et al., 2007).

It was already demonstrated that sortilin is an important regulator of BDNF sorting and

trafficking to the secretory pathways (Chen et al., 2005). A clinical study confirmed the

correlation between circulating levels of sortilin, BDNF, and MDD (

Buttenschon et al., 2015). A recent study was conducted with a cohort of 37 patients

suffering from MDD and treated with an AD drug for 12 weeks. They were compared to

49 healthy volunteers (Devader et al., 2017). Using the dosing alpha-screen method

validated for PE detection in the serum (Mazella et al., 2010), the concentrations of PE,

spadin (PE 12–28, Table 2 peptide #1), PE 12–27 (Table 2 peptide #17), and PE 14–25 (

Table 2 peptide #18) were measured with the aim to find a correlation between the

serum levels of PE peptides in healthy and patients with MDD whether or not treated

with AD drugs. Serum concentrations of the PE peptides are significantly decreased in

patients with MDD. Interestingly, PE peptide levels are partially but significantly restored

after a 12 week treatment with an AD drug, thus indicating a correlation between the

serum levels of PE-like activity and the mood of patients.

Recently, Buttenschon et al. conducted a new study, and they concluded that sortilin

could not serve as a biomarker to follow AD treatment in patients with MDD (

Buttenschon, Nielsen, Glerup, & Mors, 2017). At this stage, it is important to underline

that the release of soluble sortilin (as measured in the Buttenschon's work) depends on

matrix metalloproteinases (MMPs) (Navarro, Vincent, & Mazella, 2002), whereas PE

release depends on the intracellular maturation of sortilin by furin (Devader et al., 2017).

To validate whether or not PE and sortilin could be used as biomarkers in MDD, further

complete clinical studies, which include larger cohorts of patients with MDD whether or

not treated with AD drugs, need to be performed in the future. Moreover, advances in

developing specific antibodies able to recognize the short peptide sequences with higher

sensitivity could guide research toward new biomarkers of MDD.

4. Conclusions and perspectives

The main advantages that peptides present compared to xenobiotics are their high

specificity and low toxicity owing to their high binding affinity to their specific targets.

Two categories of currently available drugs exist, small molecules <500 Da active per os,

and large molecules >5000 Da that are inefficient orally and need to be administered in

the parenteral form as injections (Craik, Fairlie, Liras, & Price, 2013). If small molecules

are orally bioavailable, they could be designed with a lesser cost. However, owing to their

size, they could lack specificity and potentially could lead to off-target adverse effects.

Large biologic drugs show high affinity for their targets but need to be injected into

patients (Craik et al., 2013). Spadin and its analogs belong to a class of molecules that

range between small molecules and large polypeptides that represent a nonnegligible

advantage for both drug administration and specificity for targets. Advantages of spadin

and its analogs as promising AD drugs are summarized in Box 1. In addition to the central

effect of spadin on depression through targeting TREK-1 channels in the brain, spadin

diffuses in the blood circulation and reaches a number of organs including the pancreas

and prostate. Indeed, as described above, in the pancreatic β-cells, spadin plays a crucial

role as an insulin-releasing peptide upon hyperglycemia (Hivelin et al., 2016).

Box 1

Potential advantages of spadin and its analogs as antidepressant molecules

Fast acting

Psychiatrists, physicians, and patients want drugs that act more rapidly than

those that are prescribed presently. Current marketed AD drugs often take

several weeks to be efficient. Spadin or its analogs only need 4 days to exert

their AD effects (Mazella et al., 2010). Additionally, spadin and its analogs are

effective regardless of the route they are administered: intravenous,

intraperitoneal, intracerebroventricular, subcutaneous, or per os.

Specificity

Spadin and its analogs are highly specific for TREK-1 channels. They do not

modify the activity of other K  channels such as TREK-2, TRAAK, TRESK, and

TASK 1 channels (Djillani et al., 2017; Moha Ou Maati et al., 2012). This is

particularly remarkable because TREK-2 and TRAAK belong to the same

subfamily and share almost 80% homologies with TREK-1 (

Noel, Sandoz, & Lesage, 2011).

Cardiac safety

In rodent, spadin and its analogs do not affect hERG or KCNQ1/KCNE1 channels

and do not modify heart rates. These data indicate that spadin and its analogs

have no deleterious effects at the cardiac level (Djillani et al., 2017; 

Moha Ou Maati et al., 2012).

No side effects on TREK-1-controlled functions

In addition to the absence of effects on the heart, preclinical studies have shown

that spadin and its analogs have no deleterious side effects on pathologies that

are under the control of TREK-1 channels, such as pain, epilepsy, or ischemia (

Moha Ou Maati et al., 2012).

High efficiency

The development of spadin analogs has increased the AD potency of the original

peptide. Analogs of concentration 3 µg/kg are adequate to produce an AD effect

same as that obtained with a concentration of 100 µg/kg (Djillani et al., 2017).

Natural peptides

In addition to the fact that they are natural peptides, we can reasonably expect a

high level of specificity and safety for these peptides. Converse to the majority of

actual ADs that provoke withdrawal behavior, the probability to observe such a

phenomenon with a natural peptide is low.

Duration effects

The relatively short time (7 h) of in vivo effects of spadin could have been a

problem, but it was solved with the development of spadin analogs. Therefore,

the in vivo stability has become very close to 24 h (Djillani et al., 2017). This

sustained effect is important for use in clinics.

Biomarker

Spadin-like activity in the serum, mainly corresponding to PE and its

degradation products, is significantly decreased in patients suffering from MDD

in comparison to healthy controls (Devader et al., 2017).

Comparison with other putative drugs

Other TREK-1 blockers such as SID1900 or lig4–4 have been recently identified.

Although these molecules were described to be specific blockers of TREK-1

channels, they probably affect other types of ion channels as indicated in Table 1

. Furthermore, they show very low affinities for TREK-1 channels (

Wang et al., 2018; Ye et al., 2015) in comparison to spadin or its analogs (several

µM vs. nM) (Djillani et al., 2017). Many other molecules are able to block TREK-1

channels, but none of them is specific for TREK-1. Nevertheless, these molecules

were not extensively studied in the field of depression, and their properties are

detailed in the paragraph 2.3.2 of this review.

Some microRNAs were also supposed to be involved in the depression process,

but it is very soon to really define a therapeutic strategy using microRNAs (

Yuan, Mischoulon, Fava, & Otto, 2017).

Recently, ketamine was also described (Ramaker & Dulawa, 2017) as a fast-

acting molecule, but ketamine needs to be frequently administered (sometimes

in hours) to obtain a sustained effect (Schwartz, Murrough, & Iosifescu, 2016).

This point is an important drawback in the use of ketamine. Additionally,

ketamine displays numerous adverse effects (Li & Vlisides, 2016).

>60 peptides have been approved by the US Food and Drug Administration (FDA), and this

is expected to greatly increase in the near future, as >140 molecules are currently being

processed and tested in clinical trials. In addition, at least 500 peptides are under

investigation in preclinical studies (Fosgerau & Hoffmann, 2015; Kaspar & Reichert, 2013)

and are quite ready to be tested in humans.

Spadin and its analogs undoubtedly constitute important candidate peptides intended to

treat depression in clinic. As natural peptides, they irrefutably represent a huge

advantage compared to small classical ADs, as the risk–benefit ratio will be sharply

improved. The next step consists of validating their efficacy and tolerability processes in

healthy volunteers during clinical trials. Many peptides have been designed for various

pathologies such as cancer, diabetes, and infectious diseases. However, only few peptides

are used in the treatment of neurological disorders; this is mainly due to their weak BBB

crossing and their rapid degradation in vivo (McGowan, Bidwell 3rd, & Vig, 2015). These

observations are not applicable to spadin because the effects of peripheral i.p. injections

of spadin and its analogs (at doses as low as 100 µg/kg) can be measured in the brain (

Mazella et al., 2010). Additionally, the in vivo stability of spadin ranges between 7 and

23 h, a duration that is compatible with the use in human clinic. As the validation of

TREK-1 as a potential target in the treatment of depression, TREK-1 druggability was

made possible after the discovery of spadin and its analogs (Fig. 4). Thereafter, spadin

efficacy was gradually optimized through different strategies such as RI strategy,

cyclization, sequence shortening, and modifications of N- and C-terminal ends.

Ultimately, efficiency, inhibition potency, and in vivo stability of these analogs are

significantly improved compared to spadin. Moreover, AD activity is maintained despite

shortening and modifying the peptide sequence. Interestingly, the AD phenotype is

associated with an enhancement of both in vivo hippocampal neurogenesis and cortical

synaptogenesis. It will be challenging to overcome obstacles and therefore lead spadin

analogs to the finish line, i.e., marketing spadin analogs as novel AD drugs with an

original mechanism of action. However, all these observations give rise to a very positive

signal for the use of spadin and/or its derivatives as new ADs. Nevertheless, we have to

keep in mind that all these preclinical studies were performed on animal models

described to mimic a part of a clinical symptom of depression. Definitive answers can be

obtained from clinical trials.

To our knowledge, spadin and its analogs are the first therapeutic peptides with a high

potential to successfully go through clinical trials and thus be marketed for the treatment

of mood disorders.
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Methods. hTREK-1/HEK cells were seeded at a density of 20,000 cells/35 mm dish.

Electrophysiological recordings were performed 24–48 h after plating using the whole-

cell configuration of patch-clamp technique. In order to measure TREK-1 current (I ),

a cocktail of potassium channel blockers was added to the bath solution. This cocktail

contained: 3 mM 4-AP (4-aminopyridine), 10 mM TEA (tetraethylammonium), 10 µM
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Medhurst et al., 2001

Moha ou Maati et al., 2011

Moha Ou Maati et al., 2012

Glibenclamide, 100 nM Apamin and 50 nM Charybdotoxin (for more experimental details

see (Djillani et al., 2017)). Whole-cell I  currents were generated by running a pulse

or ramp protocol every 5 s from −100 to +60 mV with a holding potential maintained at

−80 mV. The inhibitory effect on TREK-1 channels of 100 nM of spadin analogs were

compared with the inhibitory effect of spadin, on cells pre- activated with 10 µM of

arachidonic acid (AA). Patch-clamp recording data were analyzed using Clampfit

(Molecular Devices, USA). I = f(V) curves were obtained from −100 to +60 mV ramp. Data

were presented as mean ± SEM from at least 3 independent experiments. In GraphPad

Prism (GraphPad software, La Jolla, USA), statistical comparisons were performed using

Student's t-test or ANOVA one-way. A result is considered as statistically significant when

p < 0.05.
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